This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Proof shortened by AV, 18-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1fv | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑃 = { 〈 0 , 𝑁 〉 } ) → ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | 1 | a1i | ⊢ ( 𝑁 ∈ 𝑉 → 0 ∈ ℤ ) |
| 3 | id | ⊢ ( 𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉 ) | |
| 4 | 2 3 | fsnd | ⊢ ( 𝑁 ∈ 𝑉 → { 〈 0 , 𝑁 〉 } : { 0 } ⟶ 𝑉 ) |
| 5 | fvsng | ⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ 𝑉 ) → ( { 〈 0 , 𝑁 〉 } ‘ 0 ) = 𝑁 ) | |
| 6 | 1 5 | mpan | ⊢ ( 𝑁 ∈ 𝑉 → ( { 〈 0 , 𝑁 〉 } ‘ 0 ) = 𝑁 ) |
| 7 | 4 6 | jca | ⊢ ( 𝑁 ∈ 𝑉 → ( { 〈 0 , 𝑁 〉 } : { 0 } ⟶ 𝑉 ∧ ( { 〈 0 , 𝑁 〉 } ‘ 0 ) = 𝑁 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑃 = { 〈 0 , 𝑁 〉 } ) → ( { 〈 0 , 𝑁 〉 } : { 0 } ⟶ 𝑉 ∧ ( { 〈 0 , 𝑁 〉 } ‘ 0 ) = 𝑁 ) ) |
| 9 | id | ⊢ ( 𝑃 = { 〈 0 , 𝑁 〉 } → 𝑃 = { 〈 0 , 𝑁 〉 } ) | |
| 10 | fz0sn | ⊢ ( 0 ... 0 ) = { 0 } | |
| 11 | 10 | a1i | ⊢ ( 𝑃 = { 〈 0 , 𝑁 〉 } → ( 0 ... 0 ) = { 0 } ) |
| 12 | 9 11 | feq12d | ⊢ ( 𝑃 = { 〈 0 , 𝑁 〉 } → ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ↔ { 〈 0 , 𝑁 〉 } : { 0 } ⟶ 𝑉 ) ) |
| 13 | fveq1 | ⊢ ( 𝑃 = { 〈 0 , 𝑁 〉 } → ( 𝑃 ‘ 0 ) = ( { 〈 0 , 𝑁 〉 } ‘ 0 ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑃 = { 〈 0 , 𝑁 〉 } → ( ( 𝑃 ‘ 0 ) = 𝑁 ↔ ( { 〈 0 , 𝑁 〉 } ‘ 0 ) = 𝑁 ) ) |
| 15 | 12 14 | anbi12d | ⊢ ( 𝑃 = { 〈 0 , 𝑁 〉 } → ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) ↔ ( { 〈 0 , 𝑁 〉 } : { 0 } ⟶ 𝑉 ∧ ( { 〈 0 , 𝑁 〉 } ‘ 0 ) = 𝑁 ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑃 = { 〈 0 , 𝑁 〉 } ) → ( ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) ↔ ( { 〈 0 , 𝑁 〉 } : { 0 } ⟶ 𝑉 ∧ ( { 〈 0 , 𝑁 〉 } ‘ 0 ) = 𝑁 ) ) ) |
| 17 | 8 16 | mpbird | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑃 = { 〈 0 , 𝑁 〉 } ) → ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) ) |