This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Values of a one-to-one function between two sets with three elements. Actually, such a function is a bijection. (Contributed by AV, 23-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvf1tp | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> F : ( 0 ..^ 3 ) --> { X , Y , Z } ) |
|
| 2 | 3nn | |- 3 e. NN |
|
| 3 | lbfzo0 | |- ( 0 e. ( 0 ..^ 3 ) <-> 3 e. NN ) |
|
| 4 | 2 3 | mpbir | |- 0 e. ( 0 ..^ 3 ) |
| 5 | 4 | a1i | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> 0 e. ( 0 ..^ 3 ) ) |
| 6 | 1 5 | ffvelcdmd | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( F ` 0 ) e. { X , Y , Z } ) |
| 7 | 1nn0 | |- 1 e. NN0 |
|
| 8 | 1lt3 | |- 1 < 3 |
|
| 9 | elfzo0 | |- ( 1 e. ( 0 ..^ 3 ) <-> ( 1 e. NN0 /\ 3 e. NN /\ 1 < 3 ) ) |
|
| 10 | 7 2 8 9 | mpbir3an | |- 1 e. ( 0 ..^ 3 ) |
| 11 | 10 | a1i | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> 1 e. ( 0 ..^ 3 ) ) |
| 12 | 1 11 | ffvelcdmd | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( F ` 1 ) e. { X , Y , Z } ) |
| 13 | 2nn0 | |- 2 e. NN0 |
|
| 14 | 2lt3 | |- 2 < 3 |
|
| 15 | elfzo0 | |- ( 2 e. ( 0 ..^ 3 ) <-> ( 2 e. NN0 /\ 3 e. NN /\ 2 < 3 ) ) |
|
| 16 | 13 2 14 15 | mpbir3an | |- 2 e. ( 0 ..^ 3 ) |
| 17 | 16 | a1i | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> 2 e. ( 0 ..^ 3 ) ) |
| 18 | 1 17 | ffvelcdmd | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( F ` 2 ) e. { X , Y , Z } ) |
| 19 | eltpi | |- ( ( F ` 0 ) e. { X , Y , Z } -> ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) ) |
|
| 20 | eltpi | |- ( ( F ` 1 ) e. { X , Y , Z } -> ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) ) |
|
| 21 | eltpi | |- ( ( F ` 2 ) e. { X , Y , Z } -> ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) ) |
|
| 22 | 19 20 21 | 3anim123i | |- ( ( ( F ` 0 ) e. { X , Y , Z } /\ ( F ` 1 ) e. { X , Y , Z } /\ ( F ` 2 ) e. { X , Y , Z } ) -> ( ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) /\ ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) /\ ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) ) ) |
| 23 | eqeq2 | |- ( X = ( F ` 0 ) -> ( ( F ` 1 ) = X <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
|
| 24 | 23 | eqcoms | |- ( ( F ` 0 ) = X -> ( ( F ` 1 ) = X <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 25 | 24 | adantl | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = X <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 26 | f1veqaeq | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( 1 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) ) ) -> ( ( F ` 1 ) = ( F ` 0 ) -> 1 = 0 ) ) |
|
| 27 | 10 4 26 | mpanr12 | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 1 ) = ( F ` 0 ) -> 1 = 0 ) ) |
| 28 | ax-1ne0 | |- 1 =/= 0 |
|
| 29 | eqneqall | |- ( 1 = 0 -> ( 1 =/= 0 -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
|
| 30 | 27 28 29 | syl6mpi | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 31 | 30 | adantr | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 32 | 25 31 | sylbid | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = X -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 33 | eqeq2 | |- ( X = ( F ` 0 ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
|
| 34 | 33 | eqcoms | |- ( ( F ` 0 ) = X -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 35 | 34 | adantl | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 36 | 16 4 | pm3.2i | |- ( 2 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) ) |
| 37 | 36 | a1i | |- ( ( F ` 0 ) = X -> ( 2 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) ) ) |
| 38 | f1veqaeq | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( 2 e. ( 0 ..^ 3 ) /\ 0 e. ( 0 ..^ 3 ) ) ) -> ( ( F ` 2 ) = ( F ` 0 ) -> 2 = 0 ) ) |
|
| 39 | 37 38 | sylan2 | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 0 ) -> 2 = 0 ) ) |
| 40 | 2ne0 | |- 2 =/= 0 |
|
| 41 | eqneqall | |- ( 2 = 0 -> ( 2 =/= 0 -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
|
| 42 | 39 40 41 | syl6mpi | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 43 | 35 42 | sylbid | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 44 | 43 | adantr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 45 | eqeq2 | |- ( Y = ( F ` 1 ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
|
| 46 | 45 | eqcoms | |- ( ( F ` 1 ) = Y -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 47 | 46 | adantl | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 48 | 16 10 | pm3.2i | |- ( 2 e. ( 0 ..^ 3 ) /\ 1 e. ( 0 ..^ 3 ) ) |
| 49 | 48 | a1i | |- ( ( F ` 0 ) = X -> ( 2 e. ( 0 ..^ 3 ) /\ 1 e. ( 0 ..^ 3 ) ) ) |
| 50 | f1veqaeq | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( 2 e. ( 0 ..^ 3 ) /\ 1 e. ( 0 ..^ 3 ) ) ) -> ( ( F ` 2 ) = ( F ` 1 ) -> 2 = 1 ) ) |
|
| 51 | 49 50 | sylan2 | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> 2 = 1 ) ) |
| 52 | 1ne2 | |- 1 =/= 2 |
|
| 53 | 52 | necomi | |- 2 =/= 1 |
| 54 | eqneqall | |- ( 2 = 1 -> ( 2 =/= 1 -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
|
| 55 | 51 53 54 | syl6mpi | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 56 | 55 | adantr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 57 | 47 56 | sylbid | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 58 | simpllr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( F ` 0 ) = X ) |
|
| 59 | simplr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( F ` 1 ) = Y ) |
|
| 60 | simpr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( F ` 2 ) = Z ) |
|
| 61 | 58 59 60 | 3jca | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) ) |
| 62 | 61 | orcd | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) ) |
| 63 | 62 | 3mix1d | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 64 | 63 | ex | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 65 | 44 57 64 | 3jaod | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Y ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 66 | 65 | ex | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = Y -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 67 | 43 | adantr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 68 | simpllr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( F ` 0 ) = X ) |
|
| 69 | simplr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( F ` 1 ) = Z ) |
|
| 70 | simpr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( F ` 2 ) = Y ) |
|
| 71 | 68 69 70 | 3jca | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) |
| 72 | 71 | olcd | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) ) |
| 73 | 72 | 3mix1d | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = Y ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 74 | 73 | ex | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 75 | eqeq2 | |- ( Z = ( F ` 1 ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
|
| 76 | 75 | eqcoms | |- ( ( F ` 1 ) = Z -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 77 | 76 | adantl | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 78 | 16 10 50 | mpanr12 | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 1 ) -> 2 = 1 ) ) |
| 79 | 78 53 54 | syl6mpi | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 80 | 79 | adantr | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 81 | 80 | adantr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 82 | 77 81 | sylbid | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 83 | 67 74 82 | 3jaod | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) /\ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 84 | 83 | ex | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( F ` 1 ) = Z -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 85 | 32 66 84 | 3jaod | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = X ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 86 | 85 | ex | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 0 ) = X -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) ) |
| 87 | eqeq2 | |- ( X = ( F ` 1 ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
|
| 88 | 87 | eqcoms | |- ( ( F ` 1 ) = X -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 89 | 88 | adantl | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 90 | 79 | adantr | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 91 | 90 | adantr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 92 | 89 91 | sylbid | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 93 | eqeq2 | |- ( Y = ( F ` 0 ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
|
| 94 | 93 | eqcoms | |- ( ( F ` 0 ) = Y -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 95 | 94 | adantl | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 96 | 16 4 38 | mpanr12 | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 0 ) -> 2 = 0 ) ) |
| 97 | 96 40 41 | syl6mpi | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 98 | 97 | adantr | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 99 | 95 98 | sylbid | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 100 | 99 | adantr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 101 | simpllr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( F ` 0 ) = Y ) |
|
| 102 | simplr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( F ` 1 ) = X ) |
|
| 103 | simpr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( F ` 2 ) = Z ) |
|
| 104 | 101 102 103 | 3jca | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) ) |
| 105 | 104 | orcd | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) ) |
| 106 | 105 | 3mix2d | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 107 | 106 | ex | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 108 | 92 100 107 | 3jaod | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = X ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 109 | 108 | ex | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = X -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 110 | eqeq2 | |- ( Y = ( F ` 0 ) -> ( ( F ` 1 ) = Y <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
|
| 111 | 110 | eqcoms | |- ( ( F ` 0 ) = Y -> ( ( F ` 1 ) = Y <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 112 | 111 | adantl | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = Y <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 113 | 30 | adantr | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 114 | 112 113 | sylbid | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = Y -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 115 | simpllr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( F ` 0 ) = Y ) |
|
| 116 | simplr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( F ` 1 ) = Z ) |
|
| 117 | simpr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( F ` 2 ) = X ) |
|
| 118 | 115 116 117 | 3jca | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) |
| 119 | 118 | olcd | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) ) |
| 120 | 119 | 3mix2d | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) /\ ( F ` 2 ) = X ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 121 | 120 | ex | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 122 | 99 | adantr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 123 | 76 | adantl | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 124 | 90 | adantr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 125 | 123 124 | sylbid | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 126 | 121 122 125 | 3jaod | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) /\ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 127 | 126 | ex | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( F ` 1 ) = Z -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 128 | 109 114 127 | 3jaod | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Y ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 129 | 128 | ex | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 0 ) = Y -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) ) |
| 130 | 88 | adantl | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 131 | 79 | adantr | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 132 | 130 131 | sylbid | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 133 | 132 | adantlr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 134 | simpllr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( F ` 0 ) = Z ) |
|
| 135 | simplr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( F ` 1 ) = X ) |
|
| 136 | simpr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( F ` 2 ) = Y ) |
|
| 137 | 134 135 136 | 3jca | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) ) |
| 138 | 137 | orcd | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) |
| 139 | 138 | 3mix3d | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) /\ ( F ` 2 ) = Y ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 140 | 139 | ex | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 141 | eqeq2 | |- ( Z = ( F ` 0 ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
|
| 142 | 141 | eqcoms | |- ( ( F ` 0 ) = Z -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 143 | 142 | adantl | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = Z <-> ( F ` 2 ) = ( F ` 0 ) ) ) |
| 144 | 97 | adantr | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = ( F ` 0 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 145 | 143 144 | sylbid | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 146 | 145 | adantr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 147 | 133 140 146 | 3jaod | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = X ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 148 | 147 | ex | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = X -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 149 | simpllr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( F ` 0 ) = Z ) |
|
| 150 | simplr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( F ` 1 ) = Y ) |
|
| 151 | simpr | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( F ` 2 ) = X ) |
|
| 152 | 149 150 151 | 3jca | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) |
| 153 | 152 | olcd | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) |
| 154 | 153 | 3mix3d | |- ( ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) /\ ( F ` 2 ) = X ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |
| 155 | 154 | ex | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = X -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 156 | 46 | adantl | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y <-> ( F ` 2 ) = ( F ` 1 ) ) ) |
| 157 | 79 | adantr | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 158 | 157 | adantr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = ( F ` 1 ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 159 | 156 158 | sylbid | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Y -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 160 | 145 | adantr | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( F ` 2 ) = Z -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 161 | 155 159 160 | 3jaod | |- ( ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) /\ ( F ` 1 ) = Y ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 162 | 161 | ex | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = Y -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 163 | eqeq2 | |- ( Z = ( F ` 0 ) -> ( ( F ` 1 ) = Z <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
|
| 164 | 163 | eqcoms | |- ( ( F ` 0 ) = Z -> ( ( F ` 1 ) = Z <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 165 | 164 | adantl | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = Z <-> ( F ` 1 ) = ( F ` 0 ) ) ) |
| 166 | 30 | adantr | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = ( F ` 0 ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 167 | 165 166 | sylbid | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( F ` 1 ) = Z -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 168 | 148 162 167 | 3jaod | |- ( ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } /\ ( F ` 0 ) = Z ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) |
| 169 | 168 | ex | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( F ` 0 ) = Z -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) ) |
| 170 | 86 129 169 | 3jaod | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) -> ( ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) -> ( ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) ) ) |
| 171 | 170 | 3impd | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( ( F ` 0 ) = X \/ ( F ` 0 ) = Y \/ ( F ` 0 ) = Z ) /\ ( ( F ` 1 ) = X \/ ( F ` 1 ) = Y \/ ( F ` 1 ) = Z ) /\ ( ( F ` 2 ) = X \/ ( F ` 2 ) = Y \/ ( F ` 2 ) = Z ) ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 172 | 22 171 | syl5 | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( F ` 0 ) e. { X , Y , Z } /\ ( F ` 1 ) e. { X , Y , Z } /\ ( F ` 2 ) e. { X , Y , Z } ) -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) ) |
| 173 | 6 12 18 172 | mp3and | |- ( F : ( 0 ..^ 3 ) -1-1-> { X , Y , Z } -> ( ( ( ( F ` 0 ) = X /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = X /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = Y ) ) \/ ( ( ( F ` 0 ) = Y /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Z ) \/ ( ( F ` 0 ) = Y /\ ( F ` 1 ) = Z /\ ( F ` 2 ) = X ) ) \/ ( ( ( F ` 0 ) = Z /\ ( F ` 1 ) = X /\ ( F ` 2 ) = Y ) \/ ( ( F ` 0 ) = Z /\ ( F ` 1 ) = Y /\ ( F ` 2 ) = X ) ) ) ) |