This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a finite simple graph the number of edges which contain a given vertex is also finite. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 21-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fusgredgfi.v | |- V = ( Vtx ` G ) |
|
| fusgredgfi.e | |- E = ( Edg ` G ) |
||
| Assertion | fusgredgfi | |- ( ( G e. FinUSGraph /\ N e. V ) -> { e e. E | N e. e } e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgredgfi.v | |- V = ( Vtx ` G ) |
|
| 2 | fusgredgfi.e | |- E = ( Edg ` G ) |
|
| 3 | 2 | fvexi | |- E e. _V |
| 4 | rabexg | |- ( E e. _V -> { e e. E | N e. e } e. _V ) |
|
| 5 | 3 4 | mp1i | |- ( ( G e. FinUSGraph /\ N e. V ) -> { e e. E | N e. e } e. _V ) |
| 6 | 1 | isfusgr | |- ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) |
| 7 | hashcl | |- ( V e. Fin -> ( # ` V ) e. NN0 ) |
|
| 8 | 6 7 | simplbiim | |- ( G e. FinUSGraph -> ( # ` V ) e. NN0 ) |
| 9 | 8 | adantr | |- ( ( G e. FinUSGraph /\ N e. V ) -> ( # ` V ) e. NN0 ) |
| 10 | fusgrusgr | |- ( G e. FinUSGraph -> G e. USGraph ) |
|
| 11 | 1 2 | usgredgleord | |- ( ( G e. USGraph /\ N e. V ) -> ( # ` { e e. E | N e. e } ) <_ ( # ` V ) ) |
| 12 | 10 11 | sylan | |- ( ( G e. FinUSGraph /\ N e. V ) -> ( # ` { e e. E | N e. e } ) <_ ( # ` V ) ) |
| 13 | hashbnd | |- ( ( { e e. E | N e. e } e. _V /\ ( # ` V ) e. NN0 /\ ( # ` { e e. E | N e. e } ) <_ ( # ` V ) ) -> { e e. E | N e. e } e. Fin ) |
|
| 14 | 5 9 12 13 | syl3anc | |- ( ( G e. FinUSGraph /\ N e. V ) -> { e e. E | N e. e } e. Fin ) |