This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite support for a function extended by a singleton. (Contributed by Stefan O'Rear, 27-Feb-2015) (Revised by AV, 19-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funsnfsupp | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) | |
| 2 | 1 | anim2i | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) ) → ( 𝑍 ∈ V ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) |
| 3 | 2 | ancomd | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ 𝑍 ∈ V ) ) |
| 4 | df-3an | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ V ) ↔ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ 𝑍 ∈ V ) ) | |
| 5 | 3 4 | sylibr | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ V ) ) |
| 6 | snopfsupp | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ V ) → { 〈 𝑋 , 𝑌 〉 } finSupp 𝑍 ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) ) → { 〈 𝑋 , 𝑌 〉 } finSupp 𝑍 ) |
| 8 | funsng | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → Fun { 〈 𝑋 , 𝑌 〉 } ) | |
| 9 | simpl | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) → Fun 𝐹 ) | |
| 10 | 8 9 | anim12ci | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) → ( Fun 𝐹 ∧ Fun { 〈 𝑋 , 𝑌 〉 } ) ) |
| 11 | dmsnopg | ⊢ ( 𝑌 ∈ 𝑊 → dom { 〈 𝑋 , 𝑌 〉 } = { 𝑋 } ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → dom { 〈 𝑋 , 𝑌 〉 } = { 𝑋 } ) |
| 13 | 12 | ineq2d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( dom 𝐹 ∩ dom { 〈 𝑋 , 𝑌 〉 } ) = ( dom 𝐹 ∩ { 𝑋 } ) ) |
| 14 | df-nel | ⊢ ( 𝑋 ∉ dom 𝐹 ↔ ¬ 𝑋 ∈ dom 𝐹 ) | |
| 15 | disjsn | ⊢ ( ( dom 𝐹 ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ dom 𝐹 ) | |
| 16 | 14 15 | sylbb2 | ⊢ ( 𝑋 ∉ dom 𝐹 → ( dom 𝐹 ∩ { 𝑋 } ) = ∅ ) |
| 17 | 16 | adantl | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) → ( dom 𝐹 ∩ { 𝑋 } ) = ∅ ) |
| 18 | 13 17 | sylan9eq | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) → ( dom 𝐹 ∩ dom { 〈 𝑋 , 𝑌 〉 } ) = ∅ ) |
| 19 | 10 18 | jca | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) → ( ( Fun 𝐹 ∧ Fun { 〈 𝑋 , 𝑌 〉 } ) ∧ ( dom 𝐹 ∩ dom { 〈 𝑋 , 𝑌 〉 } ) = ∅ ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) ) → ( ( Fun 𝐹 ∧ Fun { 〈 𝑋 , 𝑌 〉 } ) ∧ ( dom 𝐹 ∩ dom { 〈 𝑋 , 𝑌 〉 } ) = ∅ ) ) |
| 21 | funun | ⊢ ( ( ( Fun 𝐹 ∧ Fun { 〈 𝑋 , 𝑌 〉 } ) ∧ ( dom 𝐹 ∩ dom { 〈 𝑋 , 𝑌 〉 } ) = ∅ ) → Fun ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) ) → Fun ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) ) |
| 23 | 22 | fsuppunbi | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) ) → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) finSupp 𝑍 ↔ ( 𝐹 finSupp 𝑍 ∧ { 〈 𝑋 , 𝑌 〉 } finSupp 𝑍 ) ) ) |
| 24 | 7 23 | mpbiran2d | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) ) → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍 ) ) |
| 25 | 24 | ex | ⊢ ( 𝑍 ∈ V → ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍 ) ) ) |
| 26 | relfsupp | ⊢ Rel finSupp | |
| 27 | 26 | brrelex2i | ⊢ ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) finSupp 𝑍 → 𝑍 ∈ V ) |
| 28 | 26 | brrelex2i | ⊢ ( 𝐹 finSupp 𝑍 → 𝑍 ∈ V ) |
| 29 | 27 28 | pm5.21ni | ⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍 ) ) |
| 30 | 29 | a1d | ⊢ ( ¬ 𝑍 ∈ V → ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍 ) ) ) |
| 31 | 25 30 | pm2.61i | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ∧ ( Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹 ) ) → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍 ) ) |