This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the union of two classes/functions is a function, this union is finitely supported iff the two functions are finitely supported. (Contributed by AV, 18-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsuppunbi.u | ⊢ ( 𝜑 → Fun ( 𝐹 ∪ 𝐺 ) ) | |
| Assertion | fsuppunbi | ⊢ ( 𝜑 → ( ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 ↔ ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppunbi.u | ⊢ ( 𝜑 → Fun ( 𝐹 ∪ 𝐺 ) ) | |
| 2 | relfsupp | ⊢ Rel finSupp | |
| 3 | 2 | brrelex12i | ⊢ ( ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 → ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ) |
| 4 | unexb | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ↔ ( 𝐹 ∪ 𝐺 ) ∈ V ) | |
| 5 | simpr | ⊢ ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) | |
| 6 | 5 | adantr | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) |
| 7 | simprlr | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → 𝐺 ∈ V ) | |
| 8 | 7 | suppun | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) |
| 9 | 6 8 | ssfid | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 10 | fununfun | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) | |
| 11 | 10 | simpld | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → Fun 𝐹 ) |
| 12 | 11 | adantr | ⊢ ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) → Fun 𝐹 ) |
| 13 | 12 | adantr | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → Fun 𝐹 ) |
| 14 | simprll | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → 𝐹 ∈ V ) | |
| 15 | simpr | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) | |
| 16 | 15 | adantl | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → 𝑍 ∈ V ) |
| 17 | funisfsupp | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) | |
| 18 | 13 14 16 17 | syl3anc | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
| 19 | 9 18 | mpbird | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → 𝐹 finSupp 𝑍 ) |
| 20 | uncom | ⊢ ( 𝐹 ∪ 𝐺 ) = ( 𝐺 ∪ 𝐹 ) | |
| 21 | 20 | oveq1i | ⊢ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) = ( ( 𝐺 ∪ 𝐹 ) supp 𝑍 ) |
| 22 | 21 | eleq1i | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ↔ ( ( 𝐺 ∪ 𝐹 ) supp 𝑍 ) ∈ Fin ) |
| 23 | 22 | biimpi | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin → ( ( 𝐺 ∪ 𝐹 ) supp 𝑍 ) ∈ Fin ) |
| 24 | 23 | adantl | ⊢ ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) → ( ( 𝐺 ∪ 𝐹 ) supp 𝑍 ) ∈ Fin ) |
| 25 | 24 | adantr | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → ( ( 𝐺 ∪ 𝐹 ) supp 𝑍 ) ∈ Fin ) |
| 26 | 14 | suppun | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → ( 𝐺 supp 𝑍 ) ⊆ ( ( 𝐺 ∪ 𝐹 ) supp 𝑍 ) ) |
| 27 | 25 26 | ssfid | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → ( 𝐺 supp 𝑍 ) ∈ Fin ) |
| 28 | 10 | simprd | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → Fun 𝐺 ) |
| 29 | 28 | adantr | ⊢ ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) → Fun 𝐺 ) |
| 30 | 29 | adantr | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → Fun 𝐺 ) |
| 31 | funisfsupp | ⊢ ( ( Fun 𝐺 ∧ 𝐺 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐺 finSupp 𝑍 ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) ) | |
| 32 | 30 7 16 31 | syl3anc | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → ( 𝐺 finSupp 𝑍 ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) ) |
| 33 | 27 32 | mpbird | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → 𝐺 finSupp 𝑍 ) |
| 34 | 19 33 | jca | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) |
| 35 | 34 | a1d | ⊢ ( ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ∧ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) ) → ( 𝜑 → ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) ) |
| 36 | 35 | ex | ⊢ ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) → ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) → ( 𝜑 → ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) ) ) |
| 37 | fsuppimp | ⊢ ( ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 → ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ) | |
| 38 | 36 37 | syl11 | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 → ( 𝜑 → ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) ) ) |
| 39 | 4 38 | sylanbr | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 → ( 𝜑 → ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) ) ) |
| 40 | 3 39 | mpcom | ⊢ ( ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 → ( 𝜑 → ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) ) |
| 41 | 40 | com12 | ⊢ ( 𝜑 → ( ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 → ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) ) |
| 42 | simpl | ⊢ ( ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) → 𝐹 finSupp 𝑍 ) | |
| 43 | simpr | ⊢ ( ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) → 𝐺 finSupp 𝑍 ) | |
| 44 | 42 43 | fsuppun | ⊢ ( ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) |
| 45 | 44 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) |
| 46 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) → Fun ( 𝐹 ∪ 𝐺 ) ) |
| 47 | 2 | brrelex1i | ⊢ ( 𝐹 finSupp 𝑍 → 𝐹 ∈ V ) |
| 48 | 2 | brrelex1i | ⊢ ( 𝐺 finSupp 𝑍 → 𝐺 ∈ V ) |
| 49 | unexg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) | |
| 50 | 47 48 49 | syl2an | ⊢ ( ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
| 51 | 50 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
| 52 | 2 | brrelex2i | ⊢ ( 𝐹 finSupp 𝑍 → 𝑍 ∈ V ) |
| 53 | 52 | adantr | ⊢ ( ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) → 𝑍 ∈ V ) |
| 54 | 53 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) → 𝑍 ∈ V ) |
| 55 | funisfsupp | ⊢ ( ( Fun ( 𝐹 ∪ 𝐺 ) ∧ ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 ↔ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ) | |
| 56 | 46 51 54 55 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) → ( ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 ↔ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ) |
| 57 | 45 56 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) → ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 ) |
| 58 | 57 | ex | ⊢ ( 𝜑 → ( ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) → ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 ) ) |
| 59 | 41 58 | impbid | ⊢ ( 𝜑 → ( ( 𝐹 ∪ 𝐺 ) finSupp 𝑍 ↔ ( 𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍 ) ) ) |