This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite support for a function extended by a singleton. (Contributed by Stefan O'Rear, 27-Feb-2015) (Revised by AV, 19-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funsnfsupp | |- ( ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) -> ( ( F u. { <. X , Y >. } ) finSupp Z <-> F finSupp Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) -> ( X e. V /\ Y e. W ) ) |
|
| 2 | 1 | anim2i | |- ( ( Z e. _V /\ ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) ) -> ( Z e. _V /\ ( X e. V /\ Y e. W ) ) ) |
| 3 | 2 | ancomd | |- ( ( Z e. _V /\ ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) ) -> ( ( X e. V /\ Y e. W ) /\ Z e. _V ) ) |
| 4 | df-3an | |- ( ( X e. V /\ Y e. W /\ Z e. _V ) <-> ( ( X e. V /\ Y e. W ) /\ Z e. _V ) ) |
|
| 5 | 3 4 | sylibr | |- ( ( Z e. _V /\ ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) ) -> ( X e. V /\ Y e. W /\ Z e. _V ) ) |
| 6 | snopfsupp | |- ( ( X e. V /\ Y e. W /\ Z e. _V ) -> { <. X , Y >. } finSupp Z ) |
|
| 7 | 5 6 | syl | |- ( ( Z e. _V /\ ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) ) -> { <. X , Y >. } finSupp Z ) |
| 8 | funsng | |- ( ( X e. V /\ Y e. W ) -> Fun { <. X , Y >. } ) |
|
| 9 | simpl | |- ( ( Fun F /\ X e/ dom F ) -> Fun F ) |
|
| 10 | 8 9 | anim12ci | |- ( ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) -> ( Fun F /\ Fun { <. X , Y >. } ) ) |
| 11 | dmsnopg | |- ( Y e. W -> dom { <. X , Y >. } = { X } ) |
|
| 12 | 11 | adantl | |- ( ( X e. V /\ Y e. W ) -> dom { <. X , Y >. } = { X } ) |
| 13 | 12 | ineq2d | |- ( ( X e. V /\ Y e. W ) -> ( dom F i^i dom { <. X , Y >. } ) = ( dom F i^i { X } ) ) |
| 14 | df-nel | |- ( X e/ dom F <-> -. X e. dom F ) |
|
| 15 | disjsn | |- ( ( dom F i^i { X } ) = (/) <-> -. X e. dom F ) |
|
| 16 | 14 15 | sylbb2 | |- ( X e/ dom F -> ( dom F i^i { X } ) = (/) ) |
| 17 | 16 | adantl | |- ( ( Fun F /\ X e/ dom F ) -> ( dom F i^i { X } ) = (/) ) |
| 18 | 13 17 | sylan9eq | |- ( ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) -> ( dom F i^i dom { <. X , Y >. } ) = (/) ) |
| 19 | 10 18 | jca | |- ( ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) -> ( ( Fun F /\ Fun { <. X , Y >. } ) /\ ( dom F i^i dom { <. X , Y >. } ) = (/) ) ) |
| 20 | 19 | adantl | |- ( ( Z e. _V /\ ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) ) -> ( ( Fun F /\ Fun { <. X , Y >. } ) /\ ( dom F i^i dom { <. X , Y >. } ) = (/) ) ) |
| 21 | funun | |- ( ( ( Fun F /\ Fun { <. X , Y >. } ) /\ ( dom F i^i dom { <. X , Y >. } ) = (/) ) -> Fun ( F u. { <. X , Y >. } ) ) |
|
| 22 | 20 21 | syl | |- ( ( Z e. _V /\ ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) ) -> Fun ( F u. { <. X , Y >. } ) ) |
| 23 | 22 | fsuppunbi | |- ( ( Z e. _V /\ ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) ) -> ( ( F u. { <. X , Y >. } ) finSupp Z <-> ( F finSupp Z /\ { <. X , Y >. } finSupp Z ) ) ) |
| 24 | 7 23 | mpbiran2d | |- ( ( Z e. _V /\ ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) ) -> ( ( F u. { <. X , Y >. } ) finSupp Z <-> F finSupp Z ) ) |
| 25 | 24 | ex | |- ( Z e. _V -> ( ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) -> ( ( F u. { <. X , Y >. } ) finSupp Z <-> F finSupp Z ) ) ) |
| 26 | relfsupp | |- Rel finSupp |
|
| 27 | 26 | brrelex2i | |- ( ( F u. { <. X , Y >. } ) finSupp Z -> Z e. _V ) |
| 28 | 26 | brrelex2i | |- ( F finSupp Z -> Z e. _V ) |
| 29 | 27 28 | pm5.21ni | |- ( -. Z e. _V -> ( ( F u. { <. X , Y >. } ) finSupp Z <-> F finSupp Z ) ) |
| 30 | 29 | a1d | |- ( -. Z e. _V -> ( ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) -> ( ( F u. { <. X , Y >. } ) finSupp Z <-> F finSupp Z ) ) ) |
| 31 | 25 30 | pm2.61i | |- ( ( ( X e. V /\ Y e. W ) /\ ( Fun F /\ X e/ dom F ) ) -> ( ( F u. { <. X , Y >. } ) finSupp Z <-> F finSupp Z ) ) |