This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| funcoppc2.p | |- P = ( oppCat ` D ) |
||
| funcoppc2.c | |- ( ph -> C e. V ) |
||
| funcoppc2.d | |- ( ph -> D e. W ) |
||
| funcoppc4.f | |- ( ph -> ( F oppFunc G ) e. ( O Func P ) ) |
||
| Assertion | funcoppc4 | |- ( ph -> F ( C Func D ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| 2 | funcoppc2.p | |- P = ( oppCat ` D ) |
|
| 3 | funcoppc2.c | |- ( ph -> C e. V ) |
|
| 4 | funcoppc2.d | |- ( ph -> D e. W ) |
|
| 5 | funcoppc4.f | |- ( ph -> ( F oppFunc G ) e. ( O Func P ) ) |
|
| 6 | 5 | func1st2nd | |- ( ph -> ( 1st ` ( F oppFunc G ) ) ( O Func P ) ( 2nd ` ( F oppFunc G ) ) ) |
| 7 | 1 2 3 4 6 | funcoppc2 | |- ( ph -> ( 1st ` ( F oppFunc G ) ) ( C Func D ) tpos ( 2nd ` ( F oppFunc G ) ) ) |
| 8 | relfunc | |- Rel ( O Func P ) |
|
| 9 | df-ov | |- ( F oppFunc G ) = ( oppFunc ` <. F , G >. ) |
|
| 10 | eqidd | |- ( ph -> <. F , G >. = <. F , G >. ) |
|
| 11 | 5 8 9 10 | oppf1st2nd | |- ( ph -> ( ( F oppFunc G ) e. ( _V X. _V ) /\ ( ( 1st ` ( F oppFunc G ) ) = F /\ ( 2nd ` ( F oppFunc G ) ) = tpos G ) ) ) |
| 12 | 11 | simprld | |- ( ph -> ( 1st ` ( F oppFunc G ) ) = F ) |
| 13 | 11 | simprrd | |- ( ph -> ( 2nd ` ( F oppFunc G ) ) = tpos G ) |
| 14 | 13 | tposeqd | |- ( ph -> tpos ( 2nd ` ( F oppFunc G ) ) = tpos tpos G ) |
| 15 | 5 8 9 10 | oppfrcl3 | |- ( ph -> ( Rel G /\ Rel dom G ) ) |
| 16 | tpostpos2 | |- ( ( Rel G /\ Rel dom G ) -> tpos tpos G = G ) |
|
| 17 | 15 16 | syl | |- ( ph -> tpos tpos G = G ) |
| 18 | 14 17 | eqtrd | |- ( ph -> tpos ( 2nd ` ( F oppFunc G ) ) = G ) |
| 19 | 7 12 18 | 3brtr3d | |- ( ph -> F ( C Func D ) G ) |