This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an opposite functor of a class is a functor, then the second component of the original class must be a relation whose domain is a relation as well. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfrcl.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑅 ) | |
| oppfrcl.2 | ⊢ Rel 𝑅 | ||
| oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘ 𝐹 ) | ||
| oppfrcl2.4 | ⊢ ( 𝜑 → 𝐹 = 〈 𝐴 , 𝐵 〉 ) | ||
| Assertion | oppfrcl3 | ⊢ ( 𝜑 → ( Rel 𝐵 ∧ Rel dom 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑅 ) | |
| 2 | oppfrcl.2 | ⊢ Rel 𝑅 | |
| 3 | oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘ 𝐹 ) | |
| 4 | oppfrcl2.4 | ⊢ ( 𝜑 → 𝐹 = 〈 𝐴 , 𝐵 〉 ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 6 | df-ov | ⊢ ( 𝐴 oppFunc 𝐵 ) = ( oppFunc ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 7 | 5 3 6 | 3eqtr4g | ⊢ ( 𝜑 → 𝐺 = ( 𝐴 oppFunc 𝐵 ) ) |
| 8 | 1 2 3 4 | oppfrcl2 | ⊢ ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 9 | oppfvalg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 oppFunc 𝐵 ) = if ( ( Rel 𝐵 ∧ Rel dom 𝐵 ) , 〈 𝐴 , tpos 𝐵 〉 , ∅ ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 𝐴 oppFunc 𝐵 ) = if ( ( Rel 𝐵 ∧ Rel dom 𝐵 ) , 〈 𝐴 , tpos 𝐵 〉 , ∅ ) ) |
| 11 | 7 10 | eqtrd | ⊢ ( 𝜑 → 𝐺 = if ( ( Rel 𝐵 ∧ Rel dom 𝐵 ) , 〈 𝐴 , tpos 𝐵 〉 , ∅ ) ) |
| 12 | 1 2 | oppfrcllem | ⊢ ( 𝜑 → 𝐺 ≠ ∅ ) |
| 13 | 11 12 | eqnetrrd | ⊢ ( 𝜑 → if ( ( Rel 𝐵 ∧ Rel dom 𝐵 ) , 〈 𝐴 , tpos 𝐵 〉 , ∅ ) ≠ ∅ ) |
| 14 | iffalse | ⊢ ( ¬ ( Rel 𝐵 ∧ Rel dom 𝐵 ) → if ( ( Rel 𝐵 ∧ Rel dom 𝐵 ) , 〈 𝐴 , tpos 𝐵 〉 , ∅ ) = ∅ ) | |
| 15 | 14 | necon1ai | ⊢ ( if ( ( Rel 𝐵 ∧ Rel dom 𝐵 ) , 〈 𝐴 , tpos 𝐵 〉 , ∅ ) ≠ ∅ → ( Rel 𝐵 ∧ Rel dom 𝐵 ) ) |
| 16 | 13 15 | syl | ⊢ ( 𝜑 → ( Rel 𝐵 ∧ Rel dom 𝐵 ) ) |