This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| funcoppc2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| funcoppc2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| funcoppc2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| funcoppc3.f | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) | ||
| funcoppc3.g | ⊢ ( 𝜑 → 𝐺 Fn ( 𝐴 × 𝐵 ) ) | ||
| Assertion | funcoppc3 | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | funcoppc2.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | funcoppc2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | funcoppc2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 5 | funcoppc3.f | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) | |
| 6 | funcoppc3.g | ⊢ ( 𝜑 → 𝐺 Fn ( 𝐴 × 𝐵 ) ) | |
| 7 | 1 2 3 4 5 | funcoppc2 | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) tpos tpos 𝐺 ) |
| 8 | fnrel | ⊢ ( 𝐺 Fn ( 𝐴 × 𝐵 ) → Rel 𝐺 ) | |
| 9 | 6 8 | syl | ⊢ ( 𝜑 → Rel 𝐺 ) |
| 10 | relxp | ⊢ Rel ( 𝐴 × 𝐵 ) | |
| 11 | 6 | fndmd | ⊢ ( 𝜑 → dom 𝐺 = ( 𝐴 × 𝐵 ) ) |
| 12 | 11 | releqd | ⊢ ( 𝜑 → ( Rel dom 𝐺 ↔ Rel ( 𝐴 × 𝐵 ) ) ) |
| 13 | 10 12 | mpbiri | ⊢ ( 𝜑 → Rel dom 𝐺 ) |
| 14 | tpostpos2 | ⊢ ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) → tpos tpos 𝐺 = 𝐺 ) | |
| 15 | 9 13 14 | syl2anc | ⊢ ( 𝜑 → tpos tpos 𝐺 = 𝐺 ) |
| 16 | 7 15 | breqtrd | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |