This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| funcoppc2.p | |- P = ( oppCat ` D ) |
||
| funcoppc2.c | |- ( ph -> C e. V ) |
||
| funcoppc2.d | |- ( ph -> D e. W ) |
||
| funcoppc3.f | |- ( ph -> F ( O Func P ) tpos G ) |
||
| funcoppc3.g | |- ( ph -> G Fn ( A X. B ) ) |
||
| Assertion | funcoppc3 | |- ( ph -> F ( C Func D ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| 2 | funcoppc2.p | |- P = ( oppCat ` D ) |
|
| 3 | funcoppc2.c | |- ( ph -> C e. V ) |
|
| 4 | funcoppc2.d | |- ( ph -> D e. W ) |
|
| 5 | funcoppc3.f | |- ( ph -> F ( O Func P ) tpos G ) |
|
| 6 | funcoppc3.g | |- ( ph -> G Fn ( A X. B ) ) |
|
| 7 | 1 2 3 4 5 | funcoppc2 | |- ( ph -> F ( C Func D ) tpos tpos G ) |
| 8 | fnrel | |- ( G Fn ( A X. B ) -> Rel G ) |
|
| 9 | 6 8 | syl | |- ( ph -> Rel G ) |
| 10 | relxp | |- Rel ( A X. B ) |
|
| 11 | 6 | fndmd | |- ( ph -> dom G = ( A X. B ) ) |
| 12 | 11 | releqd | |- ( ph -> ( Rel dom G <-> Rel ( A X. B ) ) ) |
| 13 | 10 12 | mpbiri | |- ( ph -> Rel dom G ) |
| 14 | tpostpos2 | |- ( ( Rel G /\ Rel dom G ) -> tpos tpos G = G ) |
|
| 15 | 9 13 14 | syl2anc | |- ( ph -> tpos tpos G = G ) |
| 16 | 7 15 | breqtrd | |- ( ph -> F ( C Func D ) G ) |