This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | ||
| funcoppc2.p | |||
| funcoppc2.c | |||
| funcoppc2.d | |||
| funcoppc3.f | |||
| funcoppc3.g | |||
| Assertion | funcoppc3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | ||
| 2 | funcoppc2.p | ||
| 3 | funcoppc2.c | ||
| 4 | funcoppc2.d | ||
| 5 | funcoppc3.f | ||
| 6 | funcoppc3.g | ||
| 7 | 1 2 3 4 5 | funcoppc2 | |
| 8 | fnrel | ||
| 9 | 6 8 | syl | |
| 10 | relxp | ||
| 11 | 6 | fndmd | |
| 12 | 11 | releqd | |
| 13 | 10 12 | mpbiri | |
| 14 | tpostpos2 | ||
| 15 | 9 13 14 | syl2anc | |
| 16 | 7 15 | breqtrd |