This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025) (Proof shortened by Zhi Wang, 6-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulltermc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| fulltermc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| fulltermc.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | ||
| fulltermc2.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) | ||
| fulltermc2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| fulltermc2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | fulltermc2 | ⊢ ( 𝜑 → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulltermc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | fulltermc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | fulltermc.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | |
| 4 | fulltermc2.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) | |
| 5 | fulltermc2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | fulltermc2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑦 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( 𝑋 𝐻 𝑦 ) = ∅ ) ) |
| 9 | 8 | notbid | ⊢ ( 𝑥 = 𝑋 → ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ¬ ( 𝑋 𝐻 𝑦 ) = ∅ ) ) |
| 10 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 11 | 10 | eqeq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 𝐻 𝑦 ) = ∅ ↔ ( 𝑋 𝐻 𝑌 ) = ∅ ) ) |
| 12 | 11 | notbid | ⊢ ( 𝑦 = 𝑌 → ( ¬ ( 𝑋 𝐻 𝑦 ) = ∅ ↔ ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ) ) |
| 13 | fullfunc | ⊢ ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) | |
| 14 | 13 | ssbri | ⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 15 | 4 14 | syl | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 16 | 1 2 3 15 | fulltermc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 17 | 4 16 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) |
| 18 | 9 12 17 5 6 | rspc2dv | ⊢ ( 𝜑 → ¬ ( 𝑋 𝐻 𝑌 ) = ∅ ) |