This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulltermc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| fulltermc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| fulltermc.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | ||
| fulltermc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| Assertion | fulltermc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulltermc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | fulltermc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | fulltermc.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | |
| 4 | fulltermc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 5 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 6 | 3 | termcthind | ⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) |
| 7 | 1 5 2 6 4 | fullthinc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐷 ∈ TermCat ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 10 | 1 9 4 | funcf1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 12 | 11 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 13 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 14 | 13 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 15 | 8 9 12 14 5 | termchomn0 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ¬ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ ) |
| 16 | biimt | ⊢ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ → ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ → ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ → ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) ) |
| 18 | con34b | ⊢ ( ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ↔ ( ¬ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ → ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) | |
| 19 | 17 18 | bitr4di | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
| 20 | 19 | 2ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
| 21 | 7 20 | bitr4d | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |