This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025) (Proof shortened by Zhi Wang, 6-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulltermc.b | |- B = ( Base ` C ) |
|
| fulltermc.h | |- H = ( Hom ` C ) |
||
| fulltermc.d | |- ( ph -> D e. TermCat ) |
||
| fulltermc2.f | |- ( ph -> F ( C Full D ) G ) |
||
| fulltermc2.x | |- ( ph -> X e. B ) |
||
| fulltermc2.y | |- ( ph -> Y e. B ) |
||
| Assertion | fulltermc2 | |- ( ph -> -. ( X H Y ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulltermc.b | |- B = ( Base ` C ) |
|
| 2 | fulltermc.h | |- H = ( Hom ` C ) |
|
| 3 | fulltermc.d | |- ( ph -> D e. TermCat ) |
|
| 4 | fulltermc2.f | |- ( ph -> F ( C Full D ) G ) |
|
| 5 | fulltermc2.x | |- ( ph -> X e. B ) |
|
| 6 | fulltermc2.y | |- ( ph -> Y e. B ) |
|
| 7 | oveq1 | |- ( x = X -> ( x H y ) = ( X H y ) ) |
|
| 8 | 7 | eqeq1d | |- ( x = X -> ( ( x H y ) = (/) <-> ( X H y ) = (/) ) ) |
| 9 | 8 | notbid | |- ( x = X -> ( -. ( x H y ) = (/) <-> -. ( X H y ) = (/) ) ) |
| 10 | oveq2 | |- ( y = Y -> ( X H y ) = ( X H Y ) ) |
|
| 11 | 10 | eqeq1d | |- ( y = Y -> ( ( X H y ) = (/) <-> ( X H Y ) = (/) ) ) |
| 12 | 11 | notbid | |- ( y = Y -> ( -. ( X H y ) = (/) <-> -. ( X H Y ) = (/) ) ) |
| 13 | fullfunc | |- ( C Full D ) C_ ( C Func D ) |
|
| 14 | 13 | ssbri | |- ( F ( C Full D ) G -> F ( C Func D ) G ) |
| 15 | 4 14 | syl | |- ( ph -> F ( C Func D ) G ) |
| 16 | 1 2 3 15 | fulltermc | |- ( ph -> ( F ( C Full D ) G <-> A. x e. B A. y e. B -. ( x H y ) = (/) ) ) |
| 17 | 4 16 | mpbid | |- ( ph -> A. x e. B A. y e. B -. ( x H y ) = (/) ) |
| 18 | 9 12 17 5 6 | rspc2dv | |- ( ph -> -. ( X H Y ) = (/) ) |