This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fullpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| fullpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | ||
| fullpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | ||
| fullpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| fullpropd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fullpropd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| fullpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| fullpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| Assertion | fullpropd | ⊢ ( 𝜑 → ( 𝐴 Full 𝐶 ) = ( 𝐵 Full 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| 2 | fullpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | |
| 3 | fullpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 4 | fullpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 5 | fullpropd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | fullpropd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 7 | fullpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 8 | fullpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 9 | relfull | ⊢ Rel ( 𝐴 Full 𝐶 ) | |
| 10 | relfull | ⊢ Rel ( 𝐵 Full 𝐷 ) | |
| 11 | 1 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 14 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 15 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 16 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 17 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 18 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 19 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) | |
| 20 | 18 14 19 | funcf1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 21 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) | |
| 22 | 20 21 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 23 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) | |
| 24 | 20 23 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 25 | 14 15 16 17 22 24 | homfeqval | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 26 | 25 | eqeq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 27 | 13 26 | raleqbidva | ⊢ ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 28 | 12 27 | raleqbidva | ⊢ ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 29 | 28 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 30 | 1 2 3 4 5 6 7 8 | funcpropd | ⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
| 31 | 30 | breqd | ⊢ ( 𝜑 → ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ) ) |
| 32 | 31 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 33 | 29 32 | bitrd | ⊢ ( 𝜑 → ( ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 34 | 18 15 | isfull | ⊢ ( 𝑓 ( 𝐴 Full 𝐶 ) 𝑔 ↔ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 35 | eqid | ⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) | |
| 36 | 35 16 | isfull | ⊢ ( 𝑓 ( 𝐵 Full 𝐷 ) 𝑔 ↔ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 37 | 33 34 36 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑓 ( 𝐴 Full 𝐶 ) 𝑔 ↔ 𝑓 ( 𝐵 Full 𝐷 ) 𝑔 ) ) |
| 38 | 9 10 37 | eqbrrdiv | ⊢ ( 𝜑 → ( 𝐴 Full 𝐶 ) = ( 𝐵 Full 𝐷 ) ) |