This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fullpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| fullpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | ||
| fullpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | ||
| fullpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| fullpropd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fullpropd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| fullpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| fullpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| Assertion | fthpropd | ⊢ ( 𝜑 → ( 𝐴 Faith 𝐶 ) = ( 𝐵 Faith 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| 2 | fullpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | |
| 3 | fullpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 4 | fullpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 5 | fullpropd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | fullpropd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 7 | fullpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 8 | fullpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 9 | relfth | ⊢ Rel ( 𝐴 Faith 𝐶 ) | |
| 10 | relfth | ⊢ Rel ( 𝐵 Faith 𝐷 ) | |
| 11 | 1 2 3 4 5 6 7 8 | funcpropd | ⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
| 12 | 11 | breqd | ⊢ ( 𝜑 → ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ) ) |
| 13 | 1 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 14 | 13 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
| 15 | 13 14 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
| 16 | 12 15 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ↔ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) ) |
| 17 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 18 | 17 | isfth | ⊢ ( 𝑓 ( 𝐴 Faith 𝐶 ) 𝑔 ↔ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
| 19 | eqid | ⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) | |
| 20 | 19 | isfth | ⊢ ( 𝑓 ( 𝐵 Faith 𝐷 ) 𝑔 ↔ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
| 21 | 16 18 20 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑓 ( 𝐴 Faith 𝐶 ) 𝑔 ↔ 𝑓 ( 𝐵 Faith 𝐷 ) 𝑔 ) ) |
| 22 | 9 10 21 | eqbrrdiv | ⊢ ( 𝜑 → ( 𝐴 Faith 𝐶 ) = ( 𝐵 Faith 𝐷 ) ) |