This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fullpropd.1 | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
|
| fullpropd.2 | |- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
||
| fullpropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
||
| fullpropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| fullpropd.a | |- ( ph -> A e. V ) |
||
| fullpropd.b | |- ( ph -> B e. V ) |
||
| fullpropd.c | |- ( ph -> C e. V ) |
||
| fullpropd.d | |- ( ph -> D e. V ) |
||
| Assertion | fullpropd | |- ( ph -> ( A Full C ) = ( B Full D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullpropd.1 | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
|
| 2 | fullpropd.2 | |- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
|
| 3 | fullpropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 4 | fullpropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 5 | fullpropd.a | |- ( ph -> A e. V ) |
|
| 6 | fullpropd.b | |- ( ph -> B e. V ) |
|
| 7 | fullpropd.c | |- ( ph -> C e. V ) |
|
| 8 | fullpropd.d | |- ( ph -> D e. V ) |
|
| 9 | relfull | |- Rel ( A Full C ) |
|
| 10 | relfull | |- Rel ( B Full D ) |
|
| 11 | 1 | homfeqbas | |- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ f ( A Func C ) g ) -> ( Base ` A ) = ( Base ` B ) ) |
| 13 | 12 | adantr | |- ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 14 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 15 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 16 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 17 | 3 | ad3antrrr | |- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 18 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 19 | simpllr | |- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> f ( A Func C ) g ) |
|
| 20 | 18 14 19 | funcf1 | |- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> f : ( Base ` A ) --> ( Base ` C ) ) |
| 21 | simplr | |- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> x e. ( Base ` A ) ) |
|
| 22 | 20 21 | ffvelcdmd | |- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( f ` x ) e. ( Base ` C ) ) |
| 23 | simpr | |- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> y e. ( Base ` A ) ) |
|
| 24 | 20 23 | ffvelcdmd | |- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( f ` y ) e. ( Base ` C ) ) |
| 25 | 14 15 16 17 22 24 | homfeqval | |- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) |
| 26 | 25 | eqeq2d | |- ( ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) <-> ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) |
| 27 | 13 26 | raleqbidva | |- ( ( ( ph /\ f ( A Func C ) g ) /\ x e. ( Base ` A ) ) -> ( A. y e. ( Base ` A ) ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) <-> A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) |
| 28 | 12 27 | raleqbidva | |- ( ( ph /\ f ( A Func C ) g ) -> ( A. x e. ( Base ` A ) A. y e. ( Base ` A ) ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) <-> A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) |
| 29 | 28 | pm5.32da | |- ( ph -> ( ( f ( A Func C ) g /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) ) <-> ( f ( A Func C ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) ) |
| 30 | 1 2 3 4 5 6 7 8 | funcpropd | |- ( ph -> ( A Func C ) = ( B Func D ) ) |
| 31 | 30 | breqd | |- ( ph -> ( f ( A Func C ) g <-> f ( B Func D ) g ) ) |
| 32 | 31 | anbi1d | |- ( ph -> ( ( f ( A Func C ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) <-> ( f ( B Func D ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) ) |
| 33 | 29 32 | bitrd | |- ( ph -> ( ( f ( A Func C ) g /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) ) <-> ( f ( B Func D ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) ) |
| 34 | 18 15 | isfull | |- ( f ( A Full C ) g <-> ( f ( A Func C ) g /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) ran ( x g y ) = ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) ) ) |
| 35 | eqid | |- ( Base ` B ) = ( Base ` B ) |
|
| 36 | 35 16 | isfull | |- ( f ( B Full D ) g <-> ( f ( B Func D ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) ran ( x g y ) = ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) |
| 37 | 33 34 36 | 3bitr4g | |- ( ph -> ( f ( A Full C ) g <-> f ( B Full D ) g ) ) |
| 38 | 9 10 37 | eqbrrdiv | |- ( ph -> ( A Full C ) = ( B Full D ) ) |