This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fullpropd.1 | ||
| fullpropd.2 | |||
| fullpropd.3 | |||
| fullpropd.4 | |||
| fullpropd.a | |||
| fullpropd.b | |||
| fullpropd.c | |||
| fullpropd.d | |||
| Assertion | fthpropd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullpropd.1 | ||
| 2 | fullpropd.2 | ||
| 3 | fullpropd.3 | ||
| 4 | fullpropd.4 | ||
| 5 | fullpropd.a | ||
| 6 | fullpropd.b | ||
| 7 | fullpropd.c | ||
| 8 | fullpropd.d | ||
| 9 | relfth | ||
| 10 | relfth | ||
| 11 | 1 2 3 4 5 6 7 8 | funcpropd | |
| 12 | 11 | breqd | |
| 13 | 1 | homfeqbas | |
| 14 | 13 | raleqdv | |
| 15 | 13 14 | raleqbidv | |
| 16 | 12 15 | anbi12d | |
| 17 | eqid | ||
| 18 | 17 | isfth | |
| 19 | eqid | ||
| 20 | 19 | isfth | |
| 21 | 16 18 20 | 3bitr4g | |
| 22 | 9 10 21 | eqbrrdiv |