This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fullpropd.1 | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
|
| fullpropd.2 | |- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
||
| fullpropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
||
| fullpropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| fullpropd.a | |- ( ph -> A e. V ) |
||
| fullpropd.b | |- ( ph -> B e. V ) |
||
| fullpropd.c | |- ( ph -> C e. V ) |
||
| fullpropd.d | |- ( ph -> D e. V ) |
||
| Assertion | fthpropd | |- ( ph -> ( A Faith C ) = ( B Faith D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullpropd.1 | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
|
| 2 | fullpropd.2 | |- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
|
| 3 | fullpropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 4 | fullpropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 5 | fullpropd.a | |- ( ph -> A e. V ) |
|
| 6 | fullpropd.b | |- ( ph -> B e. V ) |
|
| 7 | fullpropd.c | |- ( ph -> C e. V ) |
|
| 8 | fullpropd.d | |- ( ph -> D e. V ) |
|
| 9 | relfth | |- Rel ( A Faith C ) |
|
| 10 | relfth | |- Rel ( B Faith D ) |
|
| 11 | 1 2 3 4 5 6 7 8 | funcpropd | |- ( ph -> ( A Func C ) = ( B Func D ) ) |
| 12 | 11 | breqd | |- ( ph -> ( f ( A Func C ) g <-> f ( B Func D ) g ) ) |
| 13 | 1 | homfeqbas | |- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
| 14 | 13 | raleqdv | |- ( ph -> ( A. y e. ( Base ` A ) Fun `' ( x g y ) <-> A. y e. ( Base ` B ) Fun `' ( x g y ) ) ) |
| 15 | 13 14 | raleqbidv | |- ( ph -> ( A. x e. ( Base ` A ) A. y e. ( Base ` A ) Fun `' ( x g y ) <-> A. x e. ( Base ` B ) A. y e. ( Base ` B ) Fun `' ( x g y ) ) ) |
| 16 | 12 15 | anbi12d | |- ( ph -> ( ( f ( A Func C ) g /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) Fun `' ( x g y ) ) <-> ( f ( B Func D ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) Fun `' ( x g y ) ) ) ) |
| 17 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 18 | 17 | isfth | |- ( f ( A Faith C ) g <-> ( f ( A Func C ) g /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) Fun `' ( x g y ) ) ) |
| 19 | eqid | |- ( Base ` B ) = ( Base ` B ) |
|
| 20 | 19 | isfth | |- ( f ( B Faith D ) g <-> ( f ( B Func D ) g /\ A. x e. ( Base ` B ) A. y e. ( Base ` B ) Fun `' ( x g y ) ) ) |
| 21 | 16 18 20 | 3bitr4g | |- ( ph -> ( f ( A Faith C ) g <-> f ( B Faith D ) g ) ) |
| 22 | 9 10 21 | eqbrrdiv | |- ( ph -> ( A Faith C ) = ( B Faith D ) ) |