This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fununfun | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → Rel ( 𝐹 ∪ 𝐺 ) ) | |
| 2 | relun | ⊢ ( Rel ( 𝐹 ∪ 𝐺 ) ↔ ( Rel 𝐹 ∧ Rel 𝐺 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ( Rel 𝐹 ∧ Rel 𝐺 ) ) |
| 4 | simpl | ⊢ ( ( Rel 𝐹 ∧ Rel 𝐺 ) → Rel 𝐹 ) | |
| 5 | fununmo | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ∃* 𝑦 𝑥 𝐹 𝑦 ) | |
| 6 | 5 | alrimiv | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 7 | 4 6 | anim12i | ⊢ ( ( ( Rel 𝐹 ∧ Rel 𝐺 ) ∧ Fun ( 𝐹 ∪ 𝐺 ) ) → ( Rel 𝐹 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
| 8 | dffun6 | ⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( ( Rel 𝐹 ∧ Rel 𝐺 ) ∧ Fun ( 𝐹 ∪ 𝐺 ) ) → Fun 𝐹 ) |
| 10 | simpr | ⊢ ( ( Rel 𝐹 ∧ Rel 𝐺 ) → Rel 𝐺 ) | |
| 11 | uncom | ⊢ ( 𝐹 ∪ 𝐺 ) = ( 𝐺 ∪ 𝐹 ) | |
| 12 | 11 | funeqi | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) ↔ Fun ( 𝐺 ∪ 𝐹 ) ) |
| 13 | fununmo | ⊢ ( Fun ( 𝐺 ∪ 𝐹 ) → ∃* 𝑦 𝑥 𝐺 𝑦 ) | |
| 14 | 12 13 | sylbi | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ∃* 𝑦 𝑥 𝐺 𝑦 ) |
| 15 | 14 | alrimiv | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ∀ 𝑥 ∃* 𝑦 𝑥 𝐺 𝑦 ) |
| 16 | 10 15 | anim12i | ⊢ ( ( ( Rel 𝐹 ∧ Rel 𝐺 ) ∧ Fun ( 𝐹 ∪ 𝐺 ) ) → ( Rel 𝐺 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐺 𝑦 ) ) |
| 17 | dffun6 | ⊢ ( Fun 𝐺 ↔ ( Rel 𝐺 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐺 𝑦 ) ) | |
| 18 | 16 17 | sylibr | ⊢ ( ( ( Rel 𝐹 ∧ Rel 𝐺 ) ∧ Fun ( 𝐹 ∪ 𝐺 ) ) → Fun 𝐺 ) |
| 19 | 9 18 | jca | ⊢ ( ( ( Rel 𝐹 ∧ Rel 𝐺 ) ∧ Fun ( 𝐹 ∪ 𝐺 ) ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) |
| 20 | 3 19 | mpancom | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) |