This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cofunex2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Fun ◡ 𝐵 ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvexg | ⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐴 ∈ V ) | |
| 2 | cofunexg | ⊢ ( ( Fun ◡ 𝐵 ∧ ◡ 𝐴 ∈ V ) → ( ◡ 𝐵 ∘ ◡ 𝐴 ) ∈ V ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( Fun ◡ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( ◡ 𝐵 ∘ ◡ 𝐴 ) ∈ V ) |
| 4 | cnvco | ⊢ ◡ ( ◡ 𝐵 ∘ ◡ 𝐴 ) = ( ◡ ◡ 𝐴 ∘ ◡ ◡ 𝐵 ) | |
| 5 | cocnvcnv2 | ⊢ ( ◡ ◡ 𝐴 ∘ ◡ ◡ 𝐵 ) = ( ◡ ◡ 𝐴 ∘ 𝐵 ) | |
| 6 | cocnvcnv1 | ⊢ ( ◡ ◡ 𝐴 ∘ 𝐵 ) = ( 𝐴 ∘ 𝐵 ) | |
| 7 | 4 5 6 | 3eqtrri | ⊢ ( 𝐴 ∘ 𝐵 ) = ◡ ( ◡ 𝐵 ∘ ◡ 𝐴 ) |
| 8 | cnvexg | ⊢ ( ( ◡ 𝐵 ∘ ◡ 𝐴 ) ∈ V → ◡ ( ◡ 𝐵 ∘ ◡ 𝐴 ) ∈ V ) | |
| 9 | 7 8 | eqeltrid | ⊢ ( ( ◡ 𝐵 ∘ ◡ 𝐴 ) ∈ V → ( 𝐴 ∘ 𝐵 ) ∈ V ) |
| 10 | 3 9 | syl | ⊢ ( ( Fun ◡ 𝐵 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Fun ◡ 𝐵 ) → ( 𝐴 ∘ 𝐵 ) ∈ V ) |