This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Index shift of a finite sum. (Contributed by NM, 27-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014) (Proof shortened by AV, 8-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumrev.1 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| fsumrev.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| fsumrev.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| fsumrev.4 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | ||
| fsumshft.5 | ⊢ ( 𝑗 = ( 𝑘 − 𝐾 ) → 𝐴 = 𝐵 ) | ||
| Assertion | fsumshft | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumrev.1 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 2 | fsumrev.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | fsumrev.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 4 | fsumrev.4 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 5 | fsumshft.5 | ⊢ ( 𝑗 = ( 𝑘 − 𝐾 ) → 𝐴 = 𝐵 ) | |
| 6 | fzfid | ⊢ ( 𝜑 → ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ∈ Fin ) | |
| 7 | 1 2 3 | mptfzshft | ⊢ ( 𝜑 → ( 𝑗 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ ( 𝑗 − 𝐾 ) ) : ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) |
| 8 | oveq1 | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 − 𝐾 ) = ( 𝑘 − 𝐾 ) ) | |
| 9 | eqid | ⊢ ( 𝑗 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ ( 𝑗 − 𝐾 ) ) = ( 𝑗 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ ( 𝑗 − 𝐾 ) ) | |
| 10 | ovex | ⊢ ( 𝑘 − 𝐾 ) ∈ V | |
| 11 | 8 9 10 | fvmpt | ⊢ ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) → ( ( 𝑗 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ ( 𝑗 − 𝐾 ) ) ‘ 𝑘 ) = ( 𝑘 − 𝐾 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) → ( ( 𝑗 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ ( 𝑗 − 𝐾 ) ) ‘ 𝑘 ) = ( 𝑘 − 𝐾 ) ) |
| 13 | 5 6 7 12 4 | fsumf1o | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) 𝐵 ) |