This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0gsumfz.b | |- B = ( Base ` G ) |
|
| nn0gsumfz.0 | |- .0. = ( 0g ` G ) |
||
| nn0gsumfz.g | |- ( ph -> G e. CMnd ) |
||
| nn0gsumfz.f | |- ( ph -> F e. ( B ^m NN0 ) ) |
||
| fsfnn0gsumfsffz.s | |- ( ph -> S e. NN0 ) |
||
| fsfnn0gsumfsffz.h | |- H = ( F |` ( 0 ... S ) ) |
||
| Assertion | fsfnn0gsumfsffz | |- ( ph -> ( A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) -> ( G gsum F ) = ( G gsum H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0gsumfz.b | |- B = ( Base ` G ) |
|
| 2 | nn0gsumfz.0 | |- .0. = ( 0g ` G ) |
|
| 3 | nn0gsumfz.g | |- ( ph -> G e. CMnd ) |
|
| 4 | nn0gsumfz.f | |- ( ph -> F e. ( B ^m NN0 ) ) |
|
| 5 | fsfnn0gsumfsffz.s | |- ( ph -> S e. NN0 ) |
|
| 6 | fsfnn0gsumfsffz.h | |- H = ( F |` ( 0 ... S ) ) |
|
| 7 | 6 | oveq2i | |- ( G gsum H ) = ( G gsum ( F |` ( 0 ... S ) ) ) |
| 8 | 3 | adantr | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> G e. CMnd ) |
| 9 | nn0ex | |- NN0 e. _V |
|
| 10 | 9 | a1i | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> NN0 e. _V ) |
| 11 | elmapi | |- ( F e. ( B ^m NN0 ) -> F : NN0 --> B ) |
|
| 12 | 4 11 | syl | |- ( ph -> F : NN0 --> B ) |
| 13 | 12 | adantr | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> F : NN0 --> B ) |
| 14 | 2 | fvexi | |- .0. e. _V |
| 15 | 14 | a1i | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> .0. e. _V ) |
| 16 | 4 | adantr | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> F e. ( B ^m NN0 ) ) |
| 17 | 5 | adantr | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> S e. NN0 ) |
| 18 | simpr | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) |
|
| 19 | 15 16 17 18 | suppssfz | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> ( F supp .0. ) C_ ( 0 ... S ) ) |
| 20 | elmapfun | |- ( F e. ( B ^m NN0 ) -> Fun F ) |
|
| 21 | 4 20 | syl | |- ( ph -> Fun F ) |
| 22 | 14 | a1i | |- ( ph -> .0. e. _V ) |
| 23 | 4 21 22 | 3jca | |- ( ph -> ( F e. ( B ^m NN0 ) /\ Fun F /\ .0. e. _V ) ) |
| 24 | fzfid | |- ( ph -> ( 0 ... S ) e. Fin ) |
|
| 25 | 24 | anim1i | |- ( ( ph /\ ( F supp .0. ) C_ ( 0 ... S ) ) -> ( ( 0 ... S ) e. Fin /\ ( F supp .0. ) C_ ( 0 ... S ) ) ) |
| 26 | suppssfifsupp | |- ( ( ( F e. ( B ^m NN0 ) /\ Fun F /\ .0. e. _V ) /\ ( ( 0 ... S ) e. Fin /\ ( F supp .0. ) C_ ( 0 ... S ) ) ) -> F finSupp .0. ) |
|
| 27 | 23 25 26 | syl2an2r | |- ( ( ph /\ ( F supp .0. ) C_ ( 0 ... S ) ) -> F finSupp .0. ) |
| 28 | 19 27 | syldan | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> F finSupp .0. ) |
| 29 | 1 2 8 10 13 19 28 | gsumres | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> ( G gsum ( F |` ( 0 ... S ) ) ) = ( G gsum F ) ) |
| 30 | 7 29 | eqtr2id | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> ( G gsum F ) = ( G gsum H ) ) |
| 31 | 30 | ex | |- ( ph -> ( A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) -> ( G gsum F ) = ( G gsum H ) ) ) |