This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The values of a finite real sequence have a supremum. (Contributed by NM, 20-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fseqsupcl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ran 𝐹 ⊆ ℝ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ran 𝐹 ⊆ ℝ ) |
| 3 | fzfi | ⊢ ( 𝑀 ... 𝑁 ) ∈ Fin | |
| 4 | ffn | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) |
| 6 | dffn4 | ⊢ ( 𝐹 Fn ( 𝑀 ... 𝑁 ) ↔ 𝐹 : ( 𝑀 ... 𝑁 ) –onto→ ran 𝐹 ) | |
| 7 | 5 6 | sylib | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → 𝐹 : ( 𝑀 ... 𝑁 ) –onto→ ran 𝐹 ) |
| 8 | fofi | ⊢ ( ( ( 𝑀 ... 𝑁 ) ∈ Fin ∧ 𝐹 : ( 𝑀 ... 𝑁 ) –onto→ ran 𝐹 ) → ran 𝐹 ∈ Fin ) | |
| 9 | 3 7 8 | sylancr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ran 𝐹 ∈ Fin ) |
| 10 | fdm | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → dom 𝐹 = ( 𝑀 ... 𝑁 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → dom 𝐹 = ( 𝑀 ... 𝑁 ) ) |
| 12 | simpl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 13 | fzn0 | ⊢ ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ( 𝑀 ... 𝑁 ) ≠ ∅ ) |
| 15 | 11 14 | eqnetrd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → dom 𝐹 ≠ ∅ ) |
| 16 | dm0rn0 | ⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) | |
| 17 | 16 | necon3bii | ⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
| 18 | 15 17 | sylib | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ran 𝐹 ≠ ∅ ) |
| 19 | ltso | ⊢ < Or ℝ | |
| 20 | fisupcl | ⊢ ( ( < Or ℝ ∧ ( ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ⊆ ℝ ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) | |
| 21 | 19 20 | mpan | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ⊆ ℝ ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) |
| 22 | 9 18 2 21 | syl3anc | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) |
| 23 | 2 22 | sseldd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |