This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The values of a finite real sequence are bounded by their supremum. (Contributed by NM, 20-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fseqsupubi | ⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ( 𝐹 ‘ 𝐾 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ran 𝐹 ⊆ ℝ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ran 𝐹 ⊆ ℝ ) |
| 3 | fdm | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → dom 𝐹 = ( 𝑀 ... 𝑁 ) ) | |
| 4 | ne0i | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑀 ... 𝑁 ) ≠ ∅ ) | |
| 5 | dm0rn0 | ⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) | |
| 6 | eqeq1 | ⊢ ( dom 𝐹 = ( 𝑀 ... 𝑁 ) → ( dom 𝐹 = ∅ ↔ ( 𝑀 ... 𝑁 ) = ∅ ) ) | |
| 7 | 6 | biimpd | ⊢ ( dom 𝐹 = ( 𝑀 ... 𝑁 ) → ( dom 𝐹 = ∅ → ( 𝑀 ... 𝑁 ) = ∅ ) ) |
| 8 | 5 7 | biimtrrid | ⊢ ( dom 𝐹 = ( 𝑀 ... 𝑁 ) → ( ran 𝐹 = ∅ → ( 𝑀 ... 𝑁 ) = ∅ ) ) |
| 9 | 8 | necon3d | ⊢ ( dom 𝐹 = ( 𝑀 ... 𝑁 ) → ( ( 𝑀 ... 𝑁 ) ≠ ∅ → ran 𝐹 ≠ ∅ ) ) |
| 10 | 4 9 | mpan9 | ⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ dom 𝐹 = ( 𝑀 ... 𝑁 ) ) → ran 𝐹 ≠ ∅ ) |
| 11 | 3 10 | sylan2 | ⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ran 𝐹 ≠ ∅ ) |
| 12 | fsequb2 | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
| 14 | ffn | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) | |
| 15 | fnfvelrn | ⊢ ( ( 𝐹 Fn ( 𝑀 ... 𝑁 ) ∧ 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝐾 ) ∈ ran 𝐹 ) | |
| 16 | 15 | ancoms | ⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 Fn ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝐾 ) ∈ ran 𝐹 ) |
| 17 | 14 16 | sylan2 | ⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ( 𝐹 ‘ 𝐾 ) ∈ ran 𝐹 ) |
| 18 | 2 11 13 17 | suprubd | ⊢ ( ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) → ( 𝐹 ‘ 𝐾 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |