This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The values of a finite real sequence have a supremum. (Contributed by NM, 20-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fseqsupcl | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> sup ( ran F , RR , < ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn | |- ( F : ( M ... N ) --> RR -> ran F C_ RR ) |
|
| 2 | 1 | adantl | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ran F C_ RR ) |
| 3 | fzfi | |- ( M ... N ) e. Fin |
|
| 4 | ffn | |- ( F : ( M ... N ) --> RR -> F Fn ( M ... N ) ) |
|
| 5 | 4 | adantl | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> F Fn ( M ... N ) ) |
| 6 | dffn4 | |- ( F Fn ( M ... N ) <-> F : ( M ... N ) -onto-> ran F ) |
|
| 7 | 5 6 | sylib | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> F : ( M ... N ) -onto-> ran F ) |
| 8 | fofi | |- ( ( ( M ... N ) e. Fin /\ F : ( M ... N ) -onto-> ran F ) -> ran F e. Fin ) |
|
| 9 | 3 7 8 | sylancr | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ran F e. Fin ) |
| 10 | fdm | |- ( F : ( M ... N ) --> RR -> dom F = ( M ... N ) ) |
|
| 11 | 10 | adantl | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> dom F = ( M ... N ) ) |
| 12 | simpl | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> N e. ( ZZ>= ` M ) ) |
|
| 13 | fzn0 | |- ( ( M ... N ) =/= (/) <-> N e. ( ZZ>= ` M ) ) |
|
| 14 | 12 13 | sylibr | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ( M ... N ) =/= (/) ) |
| 15 | 11 14 | eqnetrd | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> dom F =/= (/) ) |
| 16 | dm0rn0 | |- ( dom F = (/) <-> ran F = (/) ) |
|
| 17 | 16 | necon3bii | |- ( dom F =/= (/) <-> ran F =/= (/) ) |
| 18 | 15 17 | sylib | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ran F =/= (/) ) |
| 19 | ltso | |- < Or RR |
|
| 20 | fisupcl | |- ( ( < Or RR /\ ( ran F e. Fin /\ ran F =/= (/) /\ ran F C_ RR ) ) -> sup ( ran F , RR , < ) e. ran F ) |
|
| 21 | 19 20 | mpan | |- ( ( ran F e. Fin /\ ran F =/= (/) /\ ran F C_ RR ) -> sup ( ran F , RR , < ) e. ran F ) |
| 22 | 9 18 2 21 | syl3anc | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> sup ( ran F , RR , < ) e. ran F ) |
| 23 | 2 22 | sseldd | |- ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> sup ( ran F , RR , < ) e. RR ) |