This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. The well-founded recursion generator's domain is a subclass of A . (Contributed by Scott Fenton, 27-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem5.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| frrlem5.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | ||
| Assertion | frrlem7 | ⊢ dom 𝐹 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem5.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 2 | frrlem5.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 3 | 1 2 | frrlem5 | ⊢ 𝐹 = ∪ 𝐵 |
| 4 | 3 | dmeqi | ⊢ dom 𝐹 = dom ∪ 𝐵 |
| 5 | dmuni | ⊢ dom ∪ 𝐵 = ∪ 𝑔 ∈ 𝐵 dom 𝑔 | |
| 6 | 4 5 | eqtri | ⊢ dom 𝐹 = ∪ 𝑔 ∈ 𝐵 dom 𝑔 |
| 7 | 6 | sseq1i | ⊢ ( dom 𝐹 ⊆ 𝐴 ↔ ∪ 𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴 ) |
| 8 | iunss | ⊢ ( ∪ 𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴 ↔ ∀ 𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴 ) | |
| 9 | 7 8 | bitri | ⊢ ( dom 𝐹 ⊆ 𝐴 ↔ ∀ 𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴 ) |
| 10 | 1 | frrlem3 | ⊢ ( 𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴 ) |
| 11 | 9 10 | mprgbir | ⊢ dom 𝐹 ⊆ 𝐴 |