This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. The well-founded recursion generator's domain is a subclass of A . (Contributed by Scott Fenton, 27-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem5.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| frrlem5.2 | |- F = frecs ( R , A , G ) |
||
| Assertion | frrlem7 | |- dom F C_ A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem5.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 2 | frrlem5.2 | |- F = frecs ( R , A , G ) |
|
| 3 | 1 2 | frrlem5 | |- F = U. B |
| 4 | 3 | dmeqi | |- dom F = dom U. B |
| 5 | dmuni | |- dom U. B = U_ g e. B dom g |
|
| 6 | 4 5 | eqtri | |- dom F = U_ g e. B dom g |
| 7 | 6 | sseq1i | |- ( dom F C_ A <-> U_ g e. B dom g C_ A ) |
| 8 | iunss | |- ( U_ g e. B dom g C_ A <-> A. g e. B dom g C_ A ) |
|
| 9 | 7 8 | bitri | |- ( dom F C_ A <-> A. g e. B dom g C_ A ) |
| 10 | 1 | frrlem3 | |- ( g e. B -> dom g C_ A ) |
| 11 | 9 10 | mprgbir | |- dom F C_ A |