This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0g0 | ⊢ ∅ = ( 0g ‘ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 2 | eqid | ⊢ ( +g ‘ ∅ ) = ( +g ‘ ∅ ) | |
| 3 | eqid | ⊢ ( 0g ‘ ∅ ) = ( 0g ‘ ∅ ) | |
| 4 | 1 2 3 | grpidval | ⊢ ( 0g ‘ ∅ ) = ( ℩ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) |
| 5 | noel | ⊢ ¬ 𝑒 ∈ ∅ | |
| 6 | 5 | intnanr | ⊢ ¬ ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) |
| 7 | 6 | nex | ⊢ ¬ ∃ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) |
| 8 | euex | ⊢ ( ∃! 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) → ∃ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) | |
| 9 | 7 8 | mto | ⊢ ¬ ∃! 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) |
| 10 | iotanul | ⊢ ( ¬ ∃! 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) → ( ℩ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) = ∅ ) | |
| 11 | 9 10 | ax-mp | ⊢ ( ℩ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) = ∅ |
| 12 | 4 11 | eqtr2i | ⊢ ∅ = ( 0g ‘ ∅ ) |