This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmvscafval.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmvscafval.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| frlmvscafval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| frlmvscafval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| frlmvscafval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| frlmvscafval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| frlmvscafval.v | ⊢ ∙ = ( ·𝑠 ‘ 𝑌 ) | ||
| frlmvscafval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | frlmvscafval | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmvscafval.y | ⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmvscafval.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | frlmvscafval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | frlmvscafval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | frlmvscafval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 6 | frlmvscafval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | frlmvscafval.v | ⊢ ∙ = ( ·𝑠 ‘ 𝑌 ) | |
| 8 | frlmvscafval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 9 | 1 2 | frlmrcl | ⊢ ( 𝑋 ∈ 𝐵 → 𝑅 ∈ V ) |
| 10 | 6 9 | syl | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 11 | 1 2 | frlmpws | ⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
| 12 | 10 4 11 | syl2anc | ⊢ ( 𝜑 → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
| 13 | 12 | fveq2d | ⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
| 14 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 15 | eqid | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) | |
| 16 | eqid | ⊢ ( ·𝑠 ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( ·𝑠 ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 17 | 15 16 | ressvsca | ⊢ ( 𝐵 ∈ V → ( ·𝑠 ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( ·𝑠 ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
| 18 | 14 17 | ax-mp | ⊢ ( ·𝑠 ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( ·𝑠 ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
| 19 | 13 7 18 | 3eqtr4g | ⊢ ( 𝜑 → ∙ = ( ·𝑠 ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 20 | 19 | oveqd | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( 𝐴 ( ·𝑠 ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝑋 ) ) |
| 21 | eqid | ⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) | |
| 22 | eqid | ⊢ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 23 | rlmvsca | ⊢ ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 24 | 8 23 | eqtri | ⊢ · = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) ) |
| 25 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 26 | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 27 | fvexd | ⊢ ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ V ) | |
| 28 | rlmsca | ⊢ ( 𝑅 ∈ V → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 29 | 10 28 | syl | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 30 | 29 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) ) |
| 31 | 3 30 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) ) |
| 32 | 5 31 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) ) |
| 33 | 12 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
| 34 | 2 33 | eqtrid | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
| 35 | 15 22 | ressbasss | ⊢ ( Base ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ⊆ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
| 36 | 34 35 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 37 | 36 6 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 38 | 21 22 24 16 25 26 27 4 32 37 | pwsvscafval | ⊢ ( 𝜑 → ( 𝐴 ( ·𝑠 ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝑋 ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ) |
| 39 | 20 38 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ) |