This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmvscafval.y | |- Y = ( R freeLMod I ) |
|
| frlmvscafval.b | |- B = ( Base ` Y ) |
||
| frlmvscafval.k | |- K = ( Base ` R ) |
||
| frlmvscafval.i | |- ( ph -> I e. W ) |
||
| frlmvscafval.a | |- ( ph -> A e. K ) |
||
| frlmvscafval.x | |- ( ph -> X e. B ) |
||
| frlmvscafval.v | |- .xb = ( .s ` Y ) |
||
| frlmvscafval.t | |- .x. = ( .r ` R ) |
||
| Assertion | frlmvscafval | |- ( ph -> ( A .xb X ) = ( ( I X. { A } ) oF .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmvscafval.y | |- Y = ( R freeLMod I ) |
|
| 2 | frlmvscafval.b | |- B = ( Base ` Y ) |
|
| 3 | frlmvscafval.k | |- K = ( Base ` R ) |
|
| 4 | frlmvscafval.i | |- ( ph -> I e. W ) |
|
| 5 | frlmvscafval.a | |- ( ph -> A e. K ) |
|
| 6 | frlmvscafval.x | |- ( ph -> X e. B ) |
|
| 7 | frlmvscafval.v | |- .xb = ( .s ` Y ) |
|
| 8 | frlmvscafval.t | |- .x. = ( .r ` R ) |
|
| 9 | 1 2 | frlmrcl | |- ( X e. B -> R e. _V ) |
| 10 | 6 9 | syl | |- ( ph -> R e. _V ) |
| 11 | 1 2 | frlmpws | |- ( ( R e. _V /\ I e. W ) -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) |
| 12 | 10 4 11 | syl2anc | |- ( ph -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) |
| 13 | 12 | fveq2d | |- ( ph -> ( .s ` Y ) = ( .s ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) ) |
| 14 | 2 | fvexi | |- B e. _V |
| 15 | eqid | |- ( ( ( ringLMod ` R ) ^s I ) |`s B ) = ( ( ( ringLMod ` R ) ^s I ) |`s B ) |
|
| 16 | eqid | |- ( .s ` ( ( ringLMod ` R ) ^s I ) ) = ( .s ` ( ( ringLMod ` R ) ^s I ) ) |
|
| 17 | 15 16 | ressvsca | |- ( B e. _V -> ( .s ` ( ( ringLMod ` R ) ^s I ) ) = ( .s ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) ) |
| 18 | 14 17 | ax-mp | |- ( .s ` ( ( ringLMod ` R ) ^s I ) ) = ( .s ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) |
| 19 | 13 7 18 | 3eqtr4g | |- ( ph -> .xb = ( .s ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 20 | 19 | oveqd | |- ( ph -> ( A .xb X ) = ( A ( .s ` ( ( ringLMod ` R ) ^s I ) ) X ) ) |
| 21 | eqid | |- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
|
| 22 | eqid | |- ( Base ` ( ( ringLMod ` R ) ^s I ) ) = ( Base ` ( ( ringLMod ` R ) ^s I ) ) |
|
| 23 | rlmvsca | |- ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) |
|
| 24 | 8 23 | eqtri | |- .x. = ( .s ` ( ringLMod ` R ) ) |
| 25 | eqid | |- ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) |
|
| 26 | eqid | |- ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) = ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) |
|
| 27 | fvexd | |- ( ph -> ( ringLMod ` R ) e. _V ) |
|
| 28 | rlmsca | |- ( R e. _V -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
|
| 29 | 10 28 | syl | |- ( ph -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
| 30 | 29 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) ) |
| 31 | 3 30 | eqtrid | |- ( ph -> K = ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) ) |
| 32 | 5 31 | eleqtrd | |- ( ph -> A e. ( Base ` ( Scalar ` ( ringLMod ` R ) ) ) ) |
| 33 | 12 | fveq2d | |- ( ph -> ( Base ` Y ) = ( Base ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) ) |
| 34 | 2 33 | eqtrid | |- ( ph -> B = ( Base ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) ) |
| 35 | 15 22 | ressbasss | |- ( Base ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) C_ ( Base ` ( ( ringLMod ` R ) ^s I ) ) |
| 36 | 34 35 | eqsstrdi | |- ( ph -> B C_ ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 37 | 36 6 | sseldd | |- ( ph -> X e. ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 38 | 21 22 24 16 25 26 27 4 32 37 | pwsvscafval | |- ( ph -> ( A ( .s ` ( ( ringLMod ` R ) ^s I ) ) X ) = ( ( I X. { A } ) oF .x. X ) ) |
| 39 | 20 38 | eqtrd | |- ( ph -> ( A .xb X ) = ( ( I X. { A } ) oF .x. X ) ) |