This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmvplusgvalc.f | |- F = ( R freeLMod I ) |
|
| frlmvplusgvalc.b | |- B = ( Base ` F ) |
||
| frlmvplusgvalc.r | |- ( ph -> R e. V ) |
||
| frlmvplusgvalc.i | |- ( ph -> I e. W ) |
||
| frlmvplusgvalc.x | |- ( ph -> X e. B ) |
||
| frlmvplusgvalc.y | |- ( ph -> Y e. B ) |
||
| frlmvplusgvalc.j | |- ( ph -> J e. I ) |
||
| frlmvplusgvalc.a | |- .+ = ( +g ` R ) |
||
| frlmvplusgvalc.p | |- .+b = ( +g ` F ) |
||
| Assertion | frlmvplusgvalc | |- ( ph -> ( ( X .+b Y ) ` J ) = ( ( X ` J ) .+ ( Y ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmvplusgvalc.f | |- F = ( R freeLMod I ) |
|
| 2 | frlmvplusgvalc.b | |- B = ( Base ` F ) |
|
| 3 | frlmvplusgvalc.r | |- ( ph -> R e. V ) |
|
| 4 | frlmvplusgvalc.i | |- ( ph -> I e. W ) |
|
| 5 | frlmvplusgvalc.x | |- ( ph -> X e. B ) |
|
| 6 | frlmvplusgvalc.y | |- ( ph -> Y e. B ) |
|
| 7 | frlmvplusgvalc.j | |- ( ph -> J e. I ) |
|
| 8 | frlmvplusgvalc.a | |- .+ = ( +g ` R ) |
|
| 9 | frlmvplusgvalc.p | |- .+b = ( +g ` F ) |
|
| 10 | 1 2 3 4 5 6 8 9 | frlmplusgval | |- ( ph -> ( X .+b Y ) = ( X oF .+ Y ) ) |
| 11 | 10 | fveq1d | |- ( ph -> ( ( X .+b Y ) ` J ) = ( ( X oF .+ Y ) ` J ) ) |
| 12 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 13 | 1 12 2 | frlmbasmap | |- ( ( I e. W /\ X e. B ) -> X e. ( ( Base ` R ) ^m I ) ) |
| 14 | 4 5 13 | syl2anc | |- ( ph -> X e. ( ( Base ` R ) ^m I ) ) |
| 15 | fvexd | |- ( ph -> ( Base ` R ) e. _V ) |
|
| 16 | 15 4 | elmapd | |- ( ph -> ( X e. ( ( Base ` R ) ^m I ) <-> X : I --> ( Base ` R ) ) ) |
| 17 | 14 16 | mpbid | |- ( ph -> X : I --> ( Base ` R ) ) |
| 18 | 17 | ffnd | |- ( ph -> X Fn I ) |
| 19 | 1 12 2 | frlmbasmap | |- ( ( I e. W /\ Y e. B ) -> Y e. ( ( Base ` R ) ^m I ) ) |
| 20 | 4 6 19 | syl2anc | |- ( ph -> Y e. ( ( Base ` R ) ^m I ) ) |
| 21 | 15 4 | elmapd | |- ( ph -> ( Y e. ( ( Base ` R ) ^m I ) <-> Y : I --> ( Base ` R ) ) ) |
| 22 | 20 21 | mpbid | |- ( ph -> Y : I --> ( Base ` R ) ) |
| 23 | 22 | ffnd | |- ( ph -> Y Fn I ) |
| 24 | fnfvof | |- ( ( ( X Fn I /\ Y Fn I ) /\ ( I e. W /\ J e. I ) ) -> ( ( X oF .+ Y ) ` J ) = ( ( X ` J ) .+ ( Y ` J ) ) ) |
|
| 25 | 18 23 4 7 24 | syl22anc | |- ( ph -> ( ( X oF .+ Y ) ` J ) = ( ( X ` J ) .+ ( Y ` J ) ) ) |
| 26 | 11 25 | eqtrd | |- ( ph -> ( ( X .+b Y ) ` J ) = ( ( X ` J ) .+ ( Y ` J ) ) ) |