This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The free module over a division ring is a left vector space. (Contributed by Steven Nguyen, 29-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frlmlvec.1 | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| Assertion | frlmlvec | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmlvec.1 | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 3 | 1 | frlmlmod | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LMod ) |
| 4 | 2 3 | sylan | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LMod ) |
| 5 | 1 | frlmsca | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
| 6 | simpl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ DivRing ) | |
| 7 | 5 6 | eqeltrrd | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ 𝐹 ) ∈ DivRing ) |
| 8 | eqid | ⊢ ( Scalar ‘ 𝐹 ) = ( Scalar ‘ 𝐹 ) | |
| 9 | 8 | islvec | ⊢ ( 𝐹 ∈ LVec ↔ ( 𝐹 ∈ LMod ∧ ( Scalar ‘ 𝐹 ) ∈ DivRing ) ) |
| 10 | 4 7 9 | sylanbrc | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LVec ) |