This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The free module over a division ring is a left vector space. (Contributed by Steven Nguyen, 29-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frlmlvec.1 | |- F = ( R freeLMod I ) |
|
| Assertion | frlmlvec | |- ( ( R e. DivRing /\ I e. W ) -> F e. LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmlvec.1 | |- F = ( R freeLMod I ) |
|
| 2 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 3 | 1 | frlmlmod | |- ( ( R e. Ring /\ I e. W ) -> F e. LMod ) |
| 4 | 2 3 | sylan | |- ( ( R e. DivRing /\ I e. W ) -> F e. LMod ) |
| 5 | 1 | frlmsca | |- ( ( R e. DivRing /\ I e. W ) -> R = ( Scalar ` F ) ) |
| 6 | simpl | |- ( ( R e. DivRing /\ I e. W ) -> R e. DivRing ) |
|
| 7 | 5 6 | eqeltrrd | |- ( ( R e. DivRing /\ I e. W ) -> ( Scalar ` F ) e. DivRing ) |
| 8 | eqid | |- ( Scalar ` F ) = ( Scalar ` F ) |
|
| 9 | 8 | islvec | |- ( F e. LVec <-> ( F e. LMod /\ ( Scalar ` F ) e. DivRing ) ) |
| 10 | 4 7 9 | sylanbrc | |- ( ( R e. DivRing /\ I e. W ) -> F e. LVec ) |