This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the finite free module as a set exponential. (Contributed by AV, 6-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmfibas.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmfibas.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | ||
| Assertion | frlmfibas | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( 𝑁 ↑m 𝐼 ) = ( Base ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmfibas.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmfibas.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | |
| 3 | elmapi | ⊢ ( 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) → 𝑎 : 𝐼 ⟶ 𝑁 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) ) → 𝑎 : 𝐼 ⟶ 𝑁 ) |
| 5 | simpl | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) ) → 𝐼 ∈ Fin ) | |
| 6 | fvexd | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 7 | 4 5 6 | fdmfifsupp | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) ) → 𝑎 finSupp ( 0g ‘ 𝑅 ) ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝐼 ∈ Fin → ∀ 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) 𝑎 finSupp ( 0g ‘ 𝑅 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ∀ 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) 𝑎 finSupp ( 0g ‘ 𝑅 ) ) |
| 10 | rabid2 | ⊢ ( ( 𝑁 ↑m 𝐼 ) = { 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑎 finSupp ( 0g ‘ 𝑅 ) } ↔ ∀ 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) 𝑎 finSupp ( 0g ‘ 𝑅 ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( 𝑁 ↑m 𝐼 ) = { 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑎 finSupp ( 0g ‘ 𝑅 ) } ) |
| 12 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 13 | eqid | ⊢ { 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑎 finSupp ( 0g ‘ 𝑅 ) } = { 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑎 finSupp ( 0g ‘ 𝑅 ) } | |
| 14 | 1 2 12 13 | frlmbas | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → { 𝑎 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑎 finSupp ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝐹 ) ) |
| 15 | 11 14 | eqtrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin ) → ( 𝑁 ↑m 𝐼 ) = ( Base ‘ 𝐹 ) ) |