This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of well-founded relation with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frinxp | ⊢ ( 𝑅 Fr 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Fr 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝑧 ⊆ 𝐴 → ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝐴 ) ) | |
| 2 | ssel | ⊢ ( 𝑧 ⊆ 𝐴 → ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝐴 ) ) | |
| 3 | 1 2 | anim12d | ⊢ ( 𝑧 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 4 | brinxp | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 6 | 3 5 | syl6 | ⊢ ( 𝑧 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑧 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) ) |
| 7 | 6 | impl | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑧 ) ∧ 𝑦 ∈ 𝑧 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 8 | 7 | notbid | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑧 ) ∧ 𝑦 ∈ 𝑧 ) → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 9 | 8 | ralbidva | ⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑧 ) → ( ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 10 | 9 | rexbidva | ⊢ ( 𝑧 ⊆ 𝐴 → ( ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 12 | 11 | pm5.74i | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 13 | 12 | albii | ⊢ ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 14 | df-fr | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 𝑅 𝑥 ) ) | |
| 15 | df-fr | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) | |
| 16 | 13 14 15 | 3bitr4i | ⊢ ( 𝑅 Fr 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Fr 𝐴 ) |