This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of set-like relation with Cartesian product of its field. (Contributed by Mario Carneiro, 22-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seinxp | ⊢ ( 𝑅 Se 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Se 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 3 | 2 | rabbidva | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } = { 𝑦 ∈ 𝐴 ∣ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 ∈ 𝐴 → ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ↔ { 𝑦 ∈ 𝐴 ∣ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ∈ V ) ) |
| 5 | 4 | ralbiia | ⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ∈ V ) |
| 6 | df-se | ⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) | |
| 7 | df-se | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ∈ V ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( 𝑅 Se 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Se 𝐴 ) |