This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-founded class contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994) (Revised by Mario Carneiro, 22-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epne3 | ⊢ ( ( E Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fr3nr | ⊢ ( ( E Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵 ) ) | |
| 2 | epelg | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
| 4 | epelg | ⊢ ( 𝐷 ∈ 𝐴 → ( 𝐶 E 𝐷 ↔ 𝐶 ∈ 𝐷 ) ) | |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐶 E 𝐷 ↔ 𝐶 ∈ 𝐷 ) ) |
| 6 | epelg | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐷 E 𝐵 ↔ 𝐷 ∈ 𝐵 ) ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐷 E 𝐵 ↔ 𝐷 ∈ 𝐵 ) ) |
| 8 | 3 5 7 | 3anbi123d | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵 ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵 ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( E Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵 ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵 ) ) ) |
| 10 | 1 9 | mtbid | ⊢ ( ( E Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵 ) ) |