This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the bound variable of a class substitution using implicit substitution. Version of cbvsbcv with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 30-Sep-2008) Avoid ax-13 . (Revised by GG, 10-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvsbcvw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | cbvsbcvw | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑦 ] 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsbcvw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | cbvabv | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜓 } |
| 3 | 2 | eleq2i | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝐴 ∈ { 𝑦 ∣ 𝜓 } ) |
| 4 | df-sbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) | |
| 5 | df-sbc | ⊢ ( [ 𝐴 / 𝑦 ] 𝜓 ↔ 𝐴 ∈ { 𝑦 ∣ 𝜓 } ) | |
| 6 | 3 4 5 | 3bitr4i | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑦 ] 𝜓 ) |