This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monotone image of a directed set. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipodrsima.f | ⊢ ( 𝜑 → 𝐹 Fn 𝒫 𝐴 ) | |
| ipodrsima.m | ⊢ ( ( 𝜑 ∧ ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) | ||
| ipodrsima.d | ⊢ ( 𝜑 → ( toInc ‘ 𝐵 ) ∈ Dirset ) | ||
| ipodrsima.s | ⊢ ( 𝜑 → 𝐵 ⊆ 𝒫 𝐴 ) | ||
| ipodrsima.a | ⊢ ( 𝜑 → ( 𝐹 “ 𝐵 ) ∈ 𝑉 ) | ||
| Assertion | ipodrsima | ⊢ ( 𝜑 → ( toInc ‘ ( 𝐹 “ 𝐵 ) ) ∈ Dirset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipodrsima.f | ⊢ ( 𝜑 → 𝐹 Fn 𝒫 𝐴 ) | |
| 2 | ipodrsima.m | ⊢ ( ( 𝜑 ∧ ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) | |
| 3 | ipodrsima.d | ⊢ ( 𝜑 → ( toInc ‘ 𝐵 ) ∈ Dirset ) | |
| 4 | ipodrsima.s | ⊢ ( 𝜑 → 𝐵 ⊆ 𝒫 𝐴 ) | |
| 5 | ipodrsima.a | ⊢ ( 𝜑 → ( 𝐹 “ 𝐵 ) ∈ 𝑉 ) | |
| 6 | 5 | elexd | ⊢ ( 𝜑 → ( 𝐹 “ 𝐵 ) ∈ V ) |
| 7 | isipodrs | ⊢ ( ( toInc ‘ 𝐵 ) ∈ Dirset ↔ ( 𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 ) ) | |
| 8 | 3 7 | sylib | ⊢ ( 𝜑 → ( 𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 ) ) |
| 9 | 8 | simp2d | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 10 | fnimaeq0 | ⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ( 𝐹 “ 𝐵 ) = ∅ ↔ 𝐵 = ∅ ) ) | |
| 11 | 1 4 10 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 “ 𝐵 ) = ∅ ↔ 𝐵 = ∅ ) ) |
| 12 | 11 | necon3bid | ⊢ ( 𝜑 → ( ( 𝐹 “ 𝐵 ) ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) |
| 13 | 9 12 | mpbird | ⊢ ( 𝜑 → ( 𝐹 “ 𝐵 ) ≠ ∅ ) |
| 14 | 8 | simp3d | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 ) |
| 15 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑎 ⊆ 𝑐 ) → 𝜑 ) | |
| 16 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑎 ⊆ 𝑐 ) → 𝑎 ⊆ 𝑐 ) | |
| 17 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝐵 ⊆ 𝒫 𝐴 ) |
| 18 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑐 ∈ 𝐵 ) | |
| 19 | 17 18 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑐 ∈ 𝒫 𝐴 ) |
| 20 | 19 | elpwid | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑐 ⊆ 𝐴 ) |
| 21 | 20 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑎 ⊆ 𝑐 ) → 𝑐 ⊆ 𝐴 ) |
| 22 | vex | ⊢ 𝑎 ∈ V | |
| 23 | vex | ⊢ 𝑐 ∈ V | |
| 24 | sseq12 | ⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( 𝑢 ⊆ 𝑣 ↔ 𝑎 ⊆ 𝑐 ) ) | |
| 25 | sseq1 | ⊢ ( 𝑣 = 𝑐 → ( 𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴 ) ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( 𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴 ) ) |
| 27 | 24 26 | anbi12d | ⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ↔ ( 𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) ) |
| 28 | 27 | anbi2d | ⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( ( 𝜑 ∧ ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ) ↔ ( 𝜑 ∧ ( 𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) ) ) |
| 29 | fveq2 | ⊢ ( 𝑢 = 𝑎 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 30 | fveq2 | ⊢ ( 𝑣 = 𝑐 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑐 ) ) | |
| 31 | sseq12 | ⊢ ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) | |
| 32 | 29 30 31 | syl2an | ⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 33 | 28 32 | imbi12d | ⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( ( ( 𝜑 ∧ ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) ↔ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 34 | 22 23 33 2 | vtocl2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 35 | 15 16 21 34 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑎 ⊆ 𝑐 ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 36 | 35 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑎 ⊆ 𝑐 → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 37 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑏 ⊆ 𝑐 ) → 𝜑 ) | |
| 38 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑏 ⊆ 𝑐 ) → 𝑏 ⊆ 𝑐 ) | |
| 39 | 20 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑏 ⊆ 𝑐 ) → 𝑐 ⊆ 𝐴 ) |
| 40 | vex | ⊢ 𝑏 ∈ V | |
| 41 | sseq12 | ⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( 𝑢 ⊆ 𝑣 ↔ 𝑏 ⊆ 𝑐 ) ) | |
| 42 | 25 | adantl | ⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( 𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴 ) ) |
| 43 | 41 42 | anbi12d | ⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ↔ ( 𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) ) |
| 44 | 43 | anbi2d | ⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( ( 𝜑 ∧ ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ) ↔ ( 𝜑 ∧ ( 𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) ) ) |
| 45 | fveq2 | ⊢ ( 𝑢 = 𝑏 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 46 | sseq12 | ⊢ ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) | |
| 47 | 45 30 46 | syl2an | ⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 48 | 44 47 | imbi12d | ⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( ( ( 𝜑 ∧ ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) ↔ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 49 | 40 23 48 2 | vtocl2 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 50 | 37 38 39 49 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑏 ⊆ 𝑐 ) → ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 51 | 50 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑏 ⊆ 𝑐 → ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 52 | 36 51 | anim12d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 ⊆ 𝑐 ∧ 𝑏 ⊆ 𝑐 ) → ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 53 | unss | ⊢ ( ( 𝑎 ⊆ 𝑐 ∧ 𝑏 ⊆ 𝑐 ) ↔ ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 ) | |
| 54 | unss | ⊢ ( ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) | |
| 55 | 52 53 54 | 3imtr3g | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 → ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 56 | 55 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 → ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 57 | 56 | reximdva | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 → ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 58 | 57 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 → ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 59 | 58 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 60 | 14 59 | mpd | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 61 | uneq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( 𝑥 ∪ 𝑦 ) = ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ) | |
| 62 | 61 | sseq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ) ) |
| 63 | 62 | rexbidv | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ) ) |
| 64 | 63 | ralbidv | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ) ) |
| 65 | 64 | ralima | ⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ) ) |
| 66 | 1 4 65 | syl2anc | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ) ) |
| 67 | uneq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) = ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ) | |
| 68 | 67 | sseq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ) ) |
| 69 | 68 | rexbidv | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ) ) |
| 70 | 69 | ralima | ⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ) ) |
| 71 | 1 4 70 | syl2anc | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ) ) |
| 72 | sseq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ↔ ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) | |
| 73 | 72 | rexima | ⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ↔ ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 74 | 1 4 73 | syl2anc | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ↔ ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 75 | 74 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ↔ ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 76 | 71 75 | bitrd | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 77 | 76 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 78 | 66 77 | bitrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
| 79 | 60 78 | mpbird | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ) |
| 80 | isipodrs | ⊢ ( ( toInc ‘ ( 𝐹 “ 𝐵 ) ) ∈ Dirset ↔ ( ( 𝐹 “ 𝐵 ) ∈ V ∧ ( 𝐹 “ 𝐵 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ) ) | |
| 81 | 6 13 79 80 | syl3anbrc | ⊢ ( 𝜑 → ( toInc ‘ ( 𝐹 “ 𝐵 ) ) ∈ Dirset ) |