This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out a term in a finite product. A version of fprodsplit1 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodsplit1f.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodsplit1f.fk | ⊢ ( 𝜑 → Ⅎ 𝑘 𝐷 ) | ||
| fprodsplit1f.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodsplit1f.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fprodsplit1f.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | ||
| fprodsplit1f.d | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐵 = 𝐷 ) | ||
| Assertion | fprodsplit1f | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐷 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodsplit1f.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodsplit1f.fk | ⊢ ( 𝜑 → Ⅎ 𝑘 𝐷 ) | |
| 3 | fprodsplit1f.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | fprodsplit1f.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 5 | fprodsplit1f.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | |
| 6 | fprodsplit1f.d | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐵 = 𝐷 ) | |
| 7 | disjdif | ⊢ ( { 𝐶 } ∩ ( 𝐴 ∖ { 𝐶 } ) ) = ∅ | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( { 𝐶 } ∩ ( 𝐴 ∖ { 𝐶 } ) ) = ∅ ) |
| 9 | 5 | snssd | ⊢ ( 𝜑 → { 𝐶 } ⊆ 𝐴 ) |
| 10 | undif | ⊢ ( { 𝐶 } ⊆ 𝐴 ↔ ( { 𝐶 } ∪ ( 𝐴 ∖ { 𝐶 } ) ) = 𝐴 ) | |
| 11 | 9 10 | sylib | ⊢ ( 𝜑 → ( { 𝐶 } ∪ ( 𝐴 ∖ { 𝐶 } ) ) = 𝐴 ) |
| 12 | 11 | eqcomd | ⊢ ( 𝜑 → 𝐴 = ( { 𝐶 } ∪ ( 𝐴 ∖ { 𝐶 } ) ) ) |
| 13 | 1 8 12 3 4 | fprodsplitf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( ∏ 𝑘 ∈ { 𝐶 } 𝐵 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |
| 14 | 5 | ancli | ⊢ ( 𝜑 → ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ) |
| 15 | nfv | ⊢ Ⅎ 𝑘 𝐶 ∈ 𝐴 | |
| 16 | 1 15 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) |
| 17 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝐶 / 𝑘 ⦌ 𝐵 | |
| 18 | 17 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 19 | 16 18 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 20 | eleq1 | ⊢ ( 𝑘 = 𝐶 → ( 𝑘 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 21 | 20 | anbi2d | ⊢ ( 𝑘 = 𝐶 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ) ) |
| 22 | csbeq1a | ⊢ ( 𝑘 = 𝐶 → 𝐵 = ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ) | |
| 23 | 22 | eleq1d | ⊢ ( 𝑘 = 𝐶 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 24 | 21 23 | imbi12d | ⊢ ( 𝑘 = 𝐶 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 25 | 19 24 4 | vtoclg1f | ⊢ ( 𝐶 ∈ 𝐴 → ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 26 | 5 14 25 | sylc | ⊢ ( 𝜑 → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 27 | prodsns | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝐶 } 𝐵 = ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ) | |
| 28 | 5 26 27 | syl2anc | ⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐶 } 𝐵 = ⦋ 𝐶 / 𝑘 ⦌ 𝐵 ) |
| 29 | 1 2 5 6 | csbiedf | ⊢ ( 𝜑 → ⦋ 𝐶 / 𝑘 ⦌ 𝐵 = 𝐷 ) |
| 30 | 28 29 | eqtrd | ⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐶 } 𝐵 = 𝐷 ) |
| 31 | 30 | oveq1d | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ { 𝐶 } 𝐵 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) = ( 𝐷 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |
| 32 | 13 31 | eqtrd | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐷 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |