This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodeq0g.kph | ||
| fprodeq0g.a | |||
| fprodeq0g.b | |||
| fprodeq0g.c | |||
| fprodeq0g.b0 | |||
| Assertion | fprodeq0g |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodeq0g.kph | ||
| 2 | fprodeq0g.a | ||
| 3 | fprodeq0g.b | ||
| 4 | fprodeq0g.c | ||
| 5 | fprodeq0g.b0 | ||
| 6 | nfcvd | ||
| 7 | 1 6 2 3 4 5 | fprodsplit1f | |
| 8 | diffi | ||
| 9 | 2 8 | syl | |
| 10 | eldifi | ||
| 11 | 10 3 | sylan2 | |
| 12 | 1 9 11 | fprodclf | |
| 13 | 12 | mul02d | |
| 14 | 7 13 | eqtrd |