This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021) Avoid ax-mulf . (Revised by GG, 19-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcnlem.1 | |- F/ k ph |
|
| fprodcnlem.k | |- K = ( TopOpen ` CCfld ) |
||
| fprodcnlem.j | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| fprodcnlem.a | |- ( ph -> A e. Fin ) |
||
| fprodcnlem.b | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) |
||
| fprodcnlem.z | |- ( ph -> Z C_ A ) |
||
| fprodcnlem.w | |- ( ph -> W e. ( A \ Z ) ) |
||
| fprodcnlem.p | |- ( ph -> ( x e. X |-> prod_ k e. Z B ) e. ( J Cn K ) ) |
||
| Assertion | fprodcnlem | |- ( ph -> ( x e. X |-> prod_ k e. ( Z u. { W } ) B ) e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcnlem.1 | |- F/ k ph |
|
| 2 | fprodcnlem.k | |- K = ( TopOpen ` CCfld ) |
|
| 3 | fprodcnlem.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 4 | fprodcnlem.a | |- ( ph -> A e. Fin ) |
|
| 5 | fprodcnlem.b | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) |
|
| 6 | fprodcnlem.z | |- ( ph -> Z C_ A ) |
|
| 7 | fprodcnlem.w | |- ( ph -> W e. ( A \ Z ) ) |
|
| 8 | fprodcnlem.p | |- ( ph -> ( x e. X |-> prod_ k e. Z B ) e. ( J Cn K ) ) |
|
| 9 | nfv | |- F/ k x e. X |
|
| 10 | 1 9 | nfan | |- F/ k ( ph /\ x e. X ) |
| 11 | nfcsb1v | |- F/_ k [_ W / k ]_ B |
|
| 12 | 4 6 | ssfid | |- ( ph -> Z e. Fin ) |
| 13 | 12 | adantr | |- ( ( ph /\ x e. X ) -> Z e. Fin ) |
| 14 | 7 | adantr | |- ( ( ph /\ x e. X ) -> W e. ( A \ Z ) ) |
| 15 | 14 | eldifbd | |- ( ( ph /\ x e. X ) -> -. W e. Z ) |
| 16 | 6 | sselda | |- ( ( ph /\ k e. Z ) -> k e. A ) |
| 17 | 16 | adantlr | |- ( ( ( ph /\ x e. X ) /\ k e. Z ) -> k e. A ) |
| 18 | 3 | adantr | |- ( ( ph /\ k e. A ) -> J e. ( TopOn ` X ) ) |
| 19 | 2 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 20 | 19 | a1i | |- ( ( ph /\ k e. A ) -> K e. ( TopOn ` CC ) ) |
| 21 | cnf2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` CC ) /\ ( x e. X |-> B ) e. ( J Cn K ) ) -> ( x e. X |-> B ) : X --> CC ) |
|
| 22 | 18 20 5 21 | syl3anc | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) : X --> CC ) |
| 23 | eqid | |- ( x e. X |-> B ) = ( x e. X |-> B ) |
|
| 24 | 23 | fmpt | |- ( A. x e. X B e. CC <-> ( x e. X |-> B ) : X --> CC ) |
| 25 | 22 24 | sylibr | |- ( ( ph /\ k e. A ) -> A. x e. X B e. CC ) |
| 26 | 25 | adantlr | |- ( ( ( ph /\ x e. X ) /\ k e. A ) -> A. x e. X B e. CC ) |
| 27 | simplr | |- ( ( ( ph /\ x e. X ) /\ k e. A ) -> x e. X ) |
|
| 28 | rspa | |- ( ( A. x e. X B e. CC /\ x e. X ) -> B e. CC ) |
|
| 29 | 26 27 28 | syl2anc | |- ( ( ( ph /\ x e. X ) /\ k e. A ) -> B e. CC ) |
| 30 | 17 29 | syldan | |- ( ( ( ph /\ x e. X ) /\ k e. Z ) -> B e. CC ) |
| 31 | csbeq1a | |- ( k = W -> B = [_ W / k ]_ B ) |
|
| 32 | 14 | eldifad | |- ( ( ph /\ x e. X ) -> W e. A ) |
| 33 | nfv | |- F/ k W e. A |
|
| 34 | 10 33 | nfan | |- F/ k ( ( ph /\ x e. X ) /\ W e. A ) |
| 35 | 11 | nfel1 | |- F/ k [_ W / k ]_ B e. CC |
| 36 | 34 35 | nfim | |- F/ k ( ( ( ph /\ x e. X ) /\ W e. A ) -> [_ W / k ]_ B e. CC ) |
| 37 | eleq1 | |- ( k = W -> ( k e. A <-> W e. A ) ) |
|
| 38 | 37 | anbi2d | |- ( k = W -> ( ( ( ph /\ x e. X ) /\ k e. A ) <-> ( ( ph /\ x e. X ) /\ W e. A ) ) ) |
| 39 | 31 | eleq1d | |- ( k = W -> ( B e. CC <-> [_ W / k ]_ B e. CC ) ) |
| 40 | 38 39 | imbi12d | |- ( k = W -> ( ( ( ( ph /\ x e. X ) /\ k e. A ) -> B e. CC ) <-> ( ( ( ph /\ x e. X ) /\ W e. A ) -> [_ W / k ]_ B e. CC ) ) ) |
| 41 | 36 40 29 | vtoclg1f | |- ( W e. A -> ( ( ( ph /\ x e. X ) /\ W e. A ) -> [_ W / k ]_ B e. CC ) ) |
| 42 | 41 | anabsi7 | |- ( ( ( ph /\ x e. X ) /\ W e. A ) -> [_ W / k ]_ B e. CC ) |
| 43 | 32 42 | mpdan | |- ( ( ph /\ x e. X ) -> [_ W / k ]_ B e. CC ) |
| 44 | 10 11 13 14 15 30 31 43 | fprodsplitsn | |- ( ( ph /\ x e. X ) -> prod_ k e. ( Z u. { W } ) B = ( prod_ k e. Z B x. [_ W / k ]_ B ) ) |
| 45 | 44 | mpteq2dva | |- ( ph -> ( x e. X |-> prod_ k e. ( Z u. { W } ) B ) = ( x e. X |-> ( prod_ k e. Z B x. [_ W / k ]_ B ) ) ) |
| 46 | 7 | eldifad | |- ( ph -> W e. A ) |
| 47 | 1 33 | nfan | |- F/ k ( ph /\ W e. A ) |
| 48 | nfcv | |- F/_ k X |
|
| 49 | 48 11 | nfmpt | |- F/_ k ( x e. X |-> [_ W / k ]_ B ) |
| 50 | 49 | nfel1 | |- F/ k ( x e. X |-> [_ W / k ]_ B ) e. ( J Cn K ) |
| 51 | 47 50 | nfim | |- F/ k ( ( ph /\ W e. A ) -> ( x e. X |-> [_ W / k ]_ B ) e. ( J Cn K ) ) |
| 52 | 37 | anbi2d | |- ( k = W -> ( ( ph /\ k e. A ) <-> ( ph /\ W e. A ) ) ) |
| 53 | 31 | mpteq2dv | |- ( k = W -> ( x e. X |-> B ) = ( x e. X |-> [_ W / k ]_ B ) ) |
| 54 | 53 | eleq1d | |- ( k = W -> ( ( x e. X |-> B ) e. ( J Cn K ) <-> ( x e. X |-> [_ W / k ]_ B ) e. ( J Cn K ) ) ) |
| 55 | 52 54 | imbi12d | |- ( k = W -> ( ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) <-> ( ( ph /\ W e. A ) -> ( x e. X |-> [_ W / k ]_ B ) e. ( J Cn K ) ) ) ) |
| 56 | 51 55 5 | vtoclg1f | |- ( W e. A -> ( ( ph /\ W e. A ) -> ( x e. X |-> [_ W / k ]_ B ) e. ( J Cn K ) ) ) |
| 57 | 56 | anabsi7 | |- ( ( ph /\ W e. A ) -> ( x e. X |-> [_ W / k ]_ B ) e. ( J Cn K ) ) |
| 58 | 46 57 | mpdan | |- ( ph -> ( x e. X |-> [_ W / k ]_ B ) e. ( J Cn K ) ) |
| 59 | 19 | a1i | |- ( ph -> K e. ( TopOn ` CC ) ) |
| 60 | 2 | mpomulcn | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( K tX K ) Cn K ) |
| 61 | 60 | a1i | |- ( ph -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( K tX K ) Cn K ) ) |
| 62 | oveq12 | |- ( ( u = prod_ k e. Z B /\ v = [_ W / k ]_ B ) -> ( u x. v ) = ( prod_ k e. Z B x. [_ W / k ]_ B ) ) |
|
| 63 | 3 8 58 59 59 61 62 | cnmpt12 | |- ( ph -> ( x e. X |-> ( prod_ k e. Z B x. [_ W / k ]_ B ) ) e. ( J Cn K ) ) |
| 64 | 45 63 | eqeltrd | |- ( ph -> ( x e. X |-> prod_ k e. ( Z u. { W } ) B ) e. ( J Cn K ) ) |