This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product of functions to complex numbers from a common topological space is continuous. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcn.d | ⊢ Ⅎ 𝑘 𝜑 | |
| fprodcn.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| fprodcn.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| fprodcn.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodcn.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | fprodcn | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcn.d | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprodcn.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 3 | fprodcn.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | fprodcn.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 5 | fprodcn.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 6 | prodeq1 | ⊢ ( 𝑦 = ∅ → ∏ 𝑘 ∈ 𝑦 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) | |
| 7 | 6 | mpteq2dv | ⊢ ( 𝑦 = ∅ → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) ) |
| 8 | 7 | eleq1d | ⊢ ( 𝑦 = ∅ → ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 9 | prodeq1 | ⊢ ( 𝑦 = 𝑧 → ∏ 𝑘 ∈ 𝑦 𝐵 = ∏ 𝑘 ∈ 𝑧 𝐵 ) | |
| 10 | 9 | mpteq2dv | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ) |
| 11 | 10 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 12 | prodeq1 | ⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ∏ 𝑘 ∈ 𝑦 𝐵 = ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) | |
| 13 | 12 | mpteq2dv | ⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) ) |
| 14 | 13 | eleq1d | ⊢ ( 𝑦 = ( 𝑧 ∪ { 𝑤 } ) → ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 15 | prodeq1 | ⊢ ( 𝑦 = 𝐴 → ∏ 𝑘 ∈ 𝑦 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 ) | |
| 16 | 15 | mpteq2dv | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 17 | 16 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 18 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 | |
| 19 | 18 | mpteq2i | ⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 1 ) |
| 20 | eqidd | ⊢ ( 𝑥 = 𝑦 → 1 = 1 ) | |
| 21 | 20 | cbvmptv | ⊢ ( 𝑥 ∈ 𝑋 ↦ 1 ) = ( 𝑦 ∈ 𝑋 ↦ 1 ) |
| 22 | 19 21 | eqtri | ⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ 1 ) |
| 23 | 22 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ 1 ) ) |
| 24 | 2 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 25 | 24 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 26 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 27 | 3 25 26 | cnmptc | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ 1 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 28 | 23 27 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 29 | nfcv | ⊢ Ⅎ 𝑦 ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 | |
| 30 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑧 ∪ { 𝑤 } ) | |
| 31 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 32 | 30 31 | nfcprod | ⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 33 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 34 | 33 | prodeq2ad | ⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 = ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 35 | 29 32 34 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 36 | 35 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 37 | nfv | ⊢ Ⅎ 𝑘 ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) | |
| 38 | 1 37 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) |
| 39 | nfcv | ⊢ Ⅎ 𝑘 𝑋 | |
| 40 | nfcv | ⊢ Ⅎ 𝑘 𝑧 | |
| 41 | 40 | nfcprod1 | ⊢ Ⅎ 𝑘 ∏ 𝑘 ∈ 𝑧 𝐵 |
| 42 | 39 41 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) |
| 43 | nfcv | ⊢ Ⅎ 𝑘 ( 𝐽 Cn 𝐾 ) | |
| 44 | 42 43 | nfel | ⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) |
| 45 | 38 44 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 46 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 47 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐴 ∈ Fin ) |
| 48 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 49 | 48 31 33 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 50 | 49 | eqcomi | ⊢ ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) |
| 51 | 50 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 52 | 51 5 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 53 | 52 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 54 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑧 ⊆ 𝐴 ) | |
| 55 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) | |
| 56 | nfcv | ⊢ Ⅎ 𝑦 ∏ 𝑘 ∈ 𝑧 𝐵 | |
| 57 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 58 | 57 31 | nfcprod | ⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 59 | 33 | prodeq2sdv | ⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑧 𝐵 = ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 60 | 56 58 59 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 61 | 60 | eleq1i | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 62 | 61 | biimpi | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 63 | 62 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 64 | 45 2 46 47 53 54 55 63 | fprodcnlem | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑦 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 65 | 36 64 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 66 | 65 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ∈ ( 𝐴 ∖ 𝑧 ) ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑧 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑤 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 67 | 8 11 14 17 28 66 4 | findcard2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |