This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcllem.1 | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| fprodcllem.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) | ||
| fprodcllem.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprodcllem.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) | ||
| fprodcllem.5 | ⊢ ( 𝜑 → 1 ∈ 𝑆 ) | ||
| Assertion | fprodcllem | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcllem.1 | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 2 | fprodcllem.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) | |
| 3 | fprodcllem.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | fprodcllem.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) | |
| 5 | fprodcllem.5 | ⊢ ( 𝜑 → 1 ∈ 𝑆 ) | |
| 6 | prodeq1 | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) | |
| 7 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 | |
| 8 | 6 7 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = 1 ) |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ∏ 𝑘 ∈ 𝐴 𝐵 = 1 ) |
| 10 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 1 ∈ 𝑆 ) |
| 11 | 9 10 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| 12 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝑆 ⊆ ℂ ) |
| 13 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
| 14 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin ) |
| 15 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
| 17 | 12 13 14 15 16 | fprodcl2lem | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
| 18 | 11 17 | pm2.61dane | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |