This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprod0.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| fprod0.kc | ⊢ Ⅎ 𝑘 𝐶 | ||
| fprod0.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fprod0.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fprod0.bc | ⊢ ( 𝑘 = 𝐾 → 𝐵 = 𝐶 ) | ||
| fprod0.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝐴 ) | ||
| fprod0.c | ⊢ ( 𝜑 → 𝐶 = 0 ) | ||
| Assertion | fprod0 | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprod0.kph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fprod0.kc | ⊢ Ⅎ 𝑘 𝐶 | |
| 3 | fprod0.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | fprod0.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 5 | fprod0.bc | ⊢ ( 𝑘 = 𝐾 → 𝐵 = 𝐶 ) | |
| 6 | fprod0.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝐴 ) | |
| 7 | fprod0.c | ⊢ ( 𝜑 → 𝐶 = 0 ) | |
| 8 | 2 | a1i | ⊢ ( 𝜑 → Ⅎ 𝑘 𝐶 ) |
| 9 | 5 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐾 ) → 𝐵 = 𝐶 ) |
| 10 | 1 8 3 4 6 9 | fprodsplit1f | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 𝐶 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) ) |
| 11 | 7 | oveq1d | ⊢ ( 𝜑 → ( 𝐶 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) = ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) ) |
| 12 | diffi | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝐾 } ) ∈ Fin ) | |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → ( 𝐴 ∖ { 𝐾 } ) ∈ Fin ) |
| 14 | simpl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) ) → 𝜑 ) | |
| 15 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) → 𝑘 ∈ 𝐴 ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) ) → 𝑘 ∈ 𝐴 ) |
| 17 | 14 16 4 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) ) → 𝐵 ∈ ℂ ) |
| 18 | 1 13 17 | fprodclf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ∈ ℂ ) |
| 19 | 18 | mul02d | ⊢ ( 𝜑 → ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) = 0 ) |
| 20 | 10 11 19 | 3eqtrd | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |