This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodabs.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| fprodabs.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| fprodabs.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| Assertion | fprodabs | ⊢ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodabs.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | fprodabs.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | fprodabs.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 4 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 | oveq2 | ⊢ ( 𝑎 = 𝑀 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑀 ) ) | |
| 6 | 5 | prodeq1d | ⊢ ( 𝑎 = 𝑀 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) |
| 7 | 6 | fveq2d | ⊢ ( 𝑎 = 𝑀 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) ) |
| 8 | 5 | prodeq1d | ⊢ ( 𝑎 = 𝑀 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑎 = 𝑀 → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑎 = 𝑀 → ( ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ) ↔ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑎 = 𝑛 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑛 ) ) | |
| 12 | 11 | prodeq1d | ⊢ ( 𝑎 = 𝑛 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) |
| 13 | 12 | fveq2d | ⊢ ( 𝑎 = 𝑛 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) ) |
| 14 | 11 | prodeq1d | ⊢ ( 𝑎 = 𝑛 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑎 = 𝑛 → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑎 = 𝑛 → ( ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ) ↔ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... ( 𝑛 + 1 ) ) ) | |
| 18 | 17 | prodeq1d | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) |
| 19 | 18 | fveq2d | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) ) |
| 20 | 17 | prodeq1d | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) |
| 21 | 19 20 | eqeq12d | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) ) |
| 22 | 21 | imbi2d | ⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ) ↔ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) ) ) |
| 23 | oveq2 | ⊢ ( 𝑎 = 𝑁 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑁 ) ) | |
| 24 | 23 | prodeq1d | ⊢ ( 𝑎 = 𝑁 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) |
| 25 | 24 | fveq2d | ⊢ ( 𝑎 = 𝑁 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) ) |
| 26 | 23 | prodeq1d | ⊢ ( 𝑎 = 𝑁 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) |
| 27 | 25 26 | eqeq12d | ⊢ ( 𝑎 = 𝑁 → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ↔ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) ) |
| 28 | 27 | imbi2d | ⊢ ( 𝑎 = 𝑁 → ( ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑎 ) ( abs ‘ 𝐴 ) ) ↔ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) ) ) |
| 29 | csbfv2g | ⊢ ( 𝑀 ∈ ℤ → ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) = ( abs ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) = ( abs ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 31 | fzsn | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 33 | 32 | prodeq1d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) = ∏ 𝑘 ∈ { 𝑀 } ( abs ‘ 𝐴 ) ) |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 35 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 36 | 35 1 | eleqtrrdi | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ 𝑍 ) |
| 37 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |
| 38 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑀 / 𝑘 ⦌ 𝐴 | |
| 39 | 38 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ |
| 40 | csbeq1a | ⊢ ( 𝑘 = 𝑀 → 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) | |
| 41 | 40 | eleq1d | ⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 42 | 39 41 | rspc | ⊢ ( 𝑀 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 43 | 37 42 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑍 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 44 | 36 43 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 45 | 44 | abscld | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( abs ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ∈ ℝ ) |
| 46 | 45 | recnd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( abs ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) |
| 47 | 30 46 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 48 | prodsns | ⊢ ( ( 𝑀 ∈ ℤ ∧ ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑀 } ( abs ‘ 𝐴 ) = ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) | |
| 49 | 34 47 48 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ { 𝑀 } ( abs ‘ 𝐴 ) = ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) |
| 50 | 33 49 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) = ⦋ 𝑀 / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) |
| 51 | 31 | prodeq1d | ⊢ ( 𝑀 ∈ ℤ → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = ∏ 𝑘 ∈ { 𝑀 } 𝐴 ) |
| 52 | 51 | adantl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = ∏ 𝑘 ∈ { 𝑀 } 𝐴 ) |
| 53 | prodsns | ⊢ ( ( 𝑀 ∈ ℤ ∧ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) | |
| 54 | 34 44 53 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ { 𝑀 } 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 55 | 52 54 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
| 56 | 55 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) = ( abs ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
| 57 | 30 50 56 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) |
| 58 | 57 | expcom | ⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( abs ‘ 𝐴 ) ) ) |
| 59 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) | |
| 60 | ovex | ⊢ ( 𝑛 + 1 ) ∈ V | |
| 61 | csbfv2g | ⊢ ( ( 𝑛 + 1 ) ∈ V → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) = ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) | |
| 62 | 60 61 | ax-mp | ⊢ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) = ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 63 | 62 | eqcomi | ⊢ ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) |
| 64 | 63 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) |
| 65 | 59 64 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) · ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) ) |
| 66 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 67 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 68 | 67 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) → 𝑘 ∈ 𝑍 ) |
| 69 | 68 3 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 70 | 69 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 71 | 66 70 | fprodp1s | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 72 | 71 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ( abs ‘ ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
| 73 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) | |
| 74 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 75 | 74 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
| 76 | 75 3 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐴 ∈ ℂ ) |
| 77 | 76 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐴 ∈ ℂ ) |
| 78 | 73 77 | fprodcl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ∈ ℂ ) |
| 79 | peano2uz | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 80 | 79 1 | eleqtrrdi | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 81 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 | |
| 82 | 81 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ |
| 83 | csbeq1a | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → 𝐴 = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) | |
| 84 | 83 | eleq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐴 ∈ ℂ ↔ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 85 | 82 84 | rspc | ⊢ ( ( 𝑛 + 1 ) ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
| 86 | 37 85 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 87 | 80 86 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
| 88 | 78 87 | absmuld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) = ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) · ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
| 89 | 72 88 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) · ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
| 90 | 89 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) · ( abs ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
| 91 | 70 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 92 | 91 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 93 | 66 92 | fprodp1s | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) ) |
| 94 | 93 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) · ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ ( abs ‘ 𝐴 ) ) ) |
| 95 | 65 90 94 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) |
| 96 | 95 | 3exp | ⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) ) ) |
| 97 | 96 | com12 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) ) ) |
| 98 | 97 | a2d | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ 𝐴 ) ) → ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( abs ‘ 𝐴 ) ) ) ) |
| 99 | 10 16 22 28 58 98 | uzind4 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) ) |
| 100 | 4 99 | mpcom | ⊢ ( 𝜑 → ( abs ‘ ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ 𝐴 ) ) |