This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodabs.1 | |- Z = ( ZZ>= ` M ) |
|
| fprodabs.2 | |- ( ph -> N e. Z ) |
||
| fprodabs.3 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
| Assertion | fprodabs | |- ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodabs.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | fprodabs.2 | |- ( ph -> N e. Z ) |
|
| 3 | fprodabs.3 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
| 4 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 5 | oveq2 | |- ( a = M -> ( M ... a ) = ( M ... M ) ) |
|
| 6 | 5 | prodeq1d | |- ( a = M -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... M ) A ) |
| 7 | 6 | fveq2d | |- ( a = M -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... M ) A ) ) |
| 8 | 5 | prodeq1d | |- ( a = M -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) |
| 9 | 7 8 | eqeq12d | |- ( a = M -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) |
| 10 | 9 | imbi2d | |- ( a = M -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) ) |
| 11 | oveq2 | |- ( a = n -> ( M ... a ) = ( M ... n ) ) |
|
| 12 | 11 | prodeq1d | |- ( a = n -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... n ) A ) |
| 13 | 12 | fveq2d | |- ( a = n -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... n ) A ) ) |
| 14 | 11 | prodeq1d | |- ( a = n -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) |
| 15 | 13 14 | eqeq12d | |- ( a = n -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) ) |
| 16 | 15 | imbi2d | |- ( a = n -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) ) ) |
| 17 | oveq2 | |- ( a = ( n + 1 ) -> ( M ... a ) = ( M ... ( n + 1 ) ) ) |
|
| 18 | 17 | prodeq1d | |- ( a = ( n + 1 ) -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... ( n + 1 ) ) A ) |
| 19 | 18 | fveq2d | |- ( a = ( n + 1 ) -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) ) |
| 20 | 17 | prodeq1d | |- ( a = ( n + 1 ) -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) |
| 21 | 19 20 | eqeq12d | |- ( a = ( n + 1 ) -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) |
| 22 | 21 | imbi2d | |- ( a = ( n + 1 ) -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
| 23 | oveq2 | |- ( a = N -> ( M ... a ) = ( M ... N ) ) |
|
| 24 | 23 | prodeq1d | |- ( a = N -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... N ) A ) |
| 25 | 24 | fveq2d | |- ( a = N -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... N ) A ) ) |
| 26 | 23 | prodeq1d | |- ( a = N -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) |
| 27 | 25 26 | eqeq12d | |- ( a = N -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) |
| 28 | 27 | imbi2d | |- ( a = N -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) ) |
| 29 | csbfv2g | |- ( M e. ZZ -> [_ M / k ]_ ( abs ` A ) = ( abs ` [_ M / k ]_ A ) ) |
|
| 30 | 29 | adantl | |- ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ ( abs ` A ) = ( abs ` [_ M / k ]_ A ) ) |
| 31 | fzsn | |- ( M e. ZZ -> ( M ... M ) = { M } ) |
|
| 32 | 31 | adantl | |- ( ( ph /\ M e. ZZ ) -> ( M ... M ) = { M } ) |
| 33 | 32 | prodeq1d | |- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) ( abs ` A ) = prod_ k e. { M } ( abs ` A ) ) |
| 34 | simpr | |- ( ( ph /\ M e. ZZ ) -> M e. ZZ ) |
|
| 35 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 36 | 35 1 | eleqtrrdi | |- ( M e. ZZ -> M e. Z ) |
| 37 | 3 | ralrimiva | |- ( ph -> A. k e. Z A e. CC ) |
| 38 | nfcsb1v | |- F/_ k [_ M / k ]_ A |
|
| 39 | 38 | nfel1 | |- F/ k [_ M / k ]_ A e. CC |
| 40 | csbeq1a | |- ( k = M -> A = [_ M / k ]_ A ) |
|
| 41 | 40 | eleq1d | |- ( k = M -> ( A e. CC <-> [_ M / k ]_ A e. CC ) ) |
| 42 | 39 41 | rspc | |- ( M e. Z -> ( A. k e. Z A e. CC -> [_ M / k ]_ A e. CC ) ) |
| 43 | 37 42 | mpan9 | |- ( ( ph /\ M e. Z ) -> [_ M / k ]_ A e. CC ) |
| 44 | 36 43 | sylan2 | |- ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ A e. CC ) |
| 45 | 44 | abscld | |- ( ( ph /\ M e. ZZ ) -> ( abs ` [_ M / k ]_ A ) e. RR ) |
| 46 | 45 | recnd | |- ( ( ph /\ M e. ZZ ) -> ( abs ` [_ M / k ]_ A ) e. CC ) |
| 47 | 30 46 | eqeltrd | |- ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ ( abs ` A ) e. CC ) |
| 48 | prodsns | |- ( ( M e. ZZ /\ [_ M / k ]_ ( abs ` A ) e. CC ) -> prod_ k e. { M } ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) |
|
| 49 | 34 47 48 | syl2anc | |- ( ( ph /\ M e. ZZ ) -> prod_ k e. { M } ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) |
| 50 | 33 49 | eqtrd | |- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) |
| 51 | 31 | prodeq1d | |- ( M e. ZZ -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A ) |
| 52 | 51 | adantl | |- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A ) |
| 53 | prodsns | |- ( ( M e. ZZ /\ [_ M / k ]_ A e. CC ) -> prod_ k e. { M } A = [_ M / k ]_ A ) |
|
| 54 | 34 44 53 | syl2anc | |- ( ( ph /\ M e. ZZ ) -> prod_ k e. { M } A = [_ M / k ]_ A ) |
| 55 | 52 54 | eqtrd | |- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) A = [_ M / k ]_ A ) |
| 56 | 55 | fveq2d | |- ( ( ph /\ M e. ZZ ) -> ( abs ` prod_ k e. ( M ... M ) A ) = ( abs ` [_ M / k ]_ A ) ) |
| 57 | 30 50 56 | 3eqtr4rd | |- ( ( ph /\ M e. ZZ ) -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) |
| 58 | 57 | expcom | |- ( M e. ZZ -> ( ph -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) |
| 59 | simp3 | |- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) |
|
| 60 | ovex | |- ( n + 1 ) e. _V |
|
| 61 | csbfv2g | |- ( ( n + 1 ) e. _V -> [_ ( n + 1 ) / k ]_ ( abs ` A ) = ( abs ` [_ ( n + 1 ) / k ]_ A ) ) |
|
| 62 | 60 61 | ax-mp | |- [_ ( n + 1 ) / k ]_ ( abs ` A ) = ( abs ` [_ ( n + 1 ) / k ]_ A ) |
| 63 | 62 | eqcomi | |- ( abs ` [_ ( n + 1 ) / k ]_ A ) = [_ ( n + 1 ) / k ]_ ( abs ` A ) |
| 64 | 63 | a1i | |- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` [_ ( n + 1 ) / k ]_ A ) = [_ ( n + 1 ) / k ]_ ( abs ` A ) ) |
| 65 | 59 64 | oveq12d | |- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) |
| 66 | simpr | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> n e. ( ZZ>= ` M ) ) |
|
| 67 | elfzuz | |- ( k e. ( M ... ( n + 1 ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 68 | 67 1 | eleqtrrdi | |- ( k e. ( M ... ( n + 1 ) ) -> k e. Z ) |
| 69 | 68 3 | sylan2 | |- ( ( ph /\ k e. ( M ... ( n + 1 ) ) ) -> A e. CC ) |
| 70 | 69 | adantlr | |- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> A e. CC ) |
| 71 | 66 70 | fprodp1s | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... ( n + 1 ) ) A = ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) |
| 72 | 71 | fveq2d | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( abs ` ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) ) |
| 73 | fzfid | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( M ... n ) e. Fin ) |
|
| 74 | elfzuz | |- ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) |
|
| 75 | 74 1 | eleqtrrdi | |- ( k e. ( M ... n ) -> k e. Z ) |
| 76 | 75 3 | sylan2 | |- ( ( ph /\ k e. ( M ... n ) ) -> A e. CC ) |
| 77 | 76 | adantlr | |- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... n ) ) -> A e. CC ) |
| 78 | 73 77 | fprodcl | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... n ) A e. CC ) |
| 79 | peano2uz | |- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. ( ZZ>= ` M ) ) |
|
| 80 | 79 1 | eleqtrrdi | |- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. Z ) |
| 81 | nfcsb1v | |- F/_ k [_ ( n + 1 ) / k ]_ A |
|
| 82 | 81 | nfel1 | |- F/ k [_ ( n + 1 ) / k ]_ A e. CC |
| 83 | csbeq1a | |- ( k = ( n + 1 ) -> A = [_ ( n + 1 ) / k ]_ A ) |
|
| 84 | 83 | eleq1d | |- ( k = ( n + 1 ) -> ( A e. CC <-> [_ ( n + 1 ) / k ]_ A e. CC ) ) |
| 85 | 82 84 | rspc | |- ( ( n + 1 ) e. Z -> ( A. k e. Z A e. CC -> [_ ( n + 1 ) / k ]_ A e. CC ) ) |
| 86 | 37 85 | mpan9 | |- ( ( ph /\ ( n + 1 ) e. Z ) -> [_ ( n + 1 ) / k ]_ A e. CC ) |
| 87 | 80 86 | sylan2 | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> [_ ( n + 1 ) / k ]_ A e. CC ) |
| 88 | 78 87 | absmuld | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) |
| 89 | 72 88 | eqtrd | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) |
| 90 | 89 | 3adant3 | |- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) |
| 91 | 70 | abscld | |- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> ( abs ` A ) e. RR ) |
| 92 | 91 | recnd | |- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> ( abs ` A ) e. CC ) |
| 93 | 66 92 | fprodp1s | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) |
| 94 | 93 | 3adant3 | |- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) |
| 95 | 65 90 94 | 3eqtr4d | |- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) |
| 96 | 95 | 3exp | |- ( ph -> ( n e. ( ZZ>= ` M ) -> ( ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
| 97 | 96 | com12 | |- ( n e. ( ZZ>= ` M ) -> ( ph -> ( ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
| 98 | 97 | a2d | |- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( ph -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
| 99 | 10 16 22 28 58 98 | uzind4 | |- ( N e. ( ZZ>= ` M ) -> ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) |
| 100 | 4 99 | mpcom | |- ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) |