This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprod0.kph | ||
| fprod0.kc | |||
| fprod0.a | |||
| fprod0.b | |||
| fprod0.bc | |||
| fprod0.k | |||
| fprod0.c | |||
| Assertion | fprod0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprod0.kph | ||
| 2 | fprod0.kc | ||
| 3 | fprod0.a | ||
| 4 | fprod0.b | ||
| 5 | fprod0.bc | ||
| 6 | fprod0.k | ||
| 7 | fprod0.c | ||
| 8 | 2 | a1i | |
| 9 | 5 | adantl | |
| 10 | 1 8 3 4 6 9 | fprodsplit1f | |
| 11 | 7 | oveq1d | |
| 12 | diffi | ||
| 13 | 3 12 | syl | |
| 14 | simpl | ||
| 15 | eldifi | ||
| 16 | 15 | adantl | |
| 17 | 14 16 4 | syl2anc | |
| 18 | 1 13 17 | fprodclf | |
| 19 | 18 | mul02d | |
| 20 | 10 11 19 | 3eqtrd |