This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprod0.kph | |- F/ k ph |
|
| fprod0.kc | |- F/_ k C |
||
| fprod0.a | |- ( ph -> A e. Fin ) |
||
| fprod0.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fprod0.bc | |- ( k = K -> B = C ) |
||
| fprod0.k | |- ( ph -> K e. A ) |
||
| fprod0.c | |- ( ph -> C = 0 ) |
||
| Assertion | fprod0 | |- ( ph -> prod_ k e. A B = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprod0.kph | |- F/ k ph |
|
| 2 | fprod0.kc | |- F/_ k C |
|
| 3 | fprod0.a | |- ( ph -> A e. Fin ) |
|
| 4 | fprod0.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 5 | fprod0.bc | |- ( k = K -> B = C ) |
|
| 6 | fprod0.k | |- ( ph -> K e. A ) |
|
| 7 | fprod0.c | |- ( ph -> C = 0 ) |
|
| 8 | 2 | a1i | |- ( ph -> F/_ k C ) |
| 9 | 5 | adantl | |- ( ( ph /\ k = K ) -> B = C ) |
| 10 | 1 8 3 4 6 9 | fprodsplit1f | |- ( ph -> prod_ k e. A B = ( C x. prod_ k e. ( A \ { K } ) B ) ) |
| 11 | 7 | oveq1d | |- ( ph -> ( C x. prod_ k e. ( A \ { K } ) B ) = ( 0 x. prod_ k e. ( A \ { K } ) B ) ) |
| 12 | diffi | |- ( A e. Fin -> ( A \ { K } ) e. Fin ) |
|
| 13 | 3 12 | syl | |- ( ph -> ( A \ { K } ) e. Fin ) |
| 14 | simpl | |- ( ( ph /\ k e. ( A \ { K } ) ) -> ph ) |
|
| 15 | eldifi | |- ( k e. ( A \ { K } ) -> k e. A ) |
|
| 16 | 15 | adantl | |- ( ( ph /\ k e. ( A \ { K } ) ) -> k e. A ) |
| 17 | 14 16 4 | syl2anc | |- ( ( ph /\ k e. ( A \ { K } ) ) -> B e. CC ) |
| 18 | 1 13 17 | fprodclf | |- ( ph -> prod_ k e. ( A \ { K } ) B e. CC ) |
| 19 | 18 | mul02d | |- ( ph -> ( 0 x. prod_ k e. ( A \ { K } ) B ) = 0 ) |
| 20 | 10 11 19 | 3eqtrd | |- ( ph -> prod_ k e. A B = 0 ) |